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The high fracture toughness improvements exhibited by nanofilled polymers is commonly thought of as
due to the large amount of energy dissipated at the nanoscale.

In the present work, a multiscale modelling strategy to assess the nanocomposite toughening due to
plastic yielding of nanovoids is presented. The model accounts for the emergence of an interphase with
mechanical properties different from those of the matrix.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The recent advances in nanotechnology go towards the produc-
tion of multi-functional materials through the designing of struc-
tures at the nanometer scale. One of the most interesting
features concerned with nanocomposites is that they offer excep-
tional improvements at very low filler concentrations, thus assist-
ing in the achievement of high-level performances across various
engineering applications. It is acknowledged that the high fracture
toughness improvements exhibited by nanofilled polymers are
strictly related to the large amount of energy dissipated by the dif-
ferent damaging mechanisms taking place at the nanoscale. This is
the reason for the increasing attention paid in the recent literature
to identify nanocomposite damaging mechanisms and to quantify,
through models, the related energy dissipation [1–12]. An initial
study on the energy dissipation due to the interfacial debonding
of nanoparticles has been done by Chen et al. [2]. By means of an
energy analysis of the process, these authors derived a simple
size-dependent formulation for the debonding stress which was la-
ter used to compute the energy dissipation due to this mechanism.
The size distribution of particles was thought of as obeying a log-
arithmic normal distribution and the Weibull distribution function
was used to describe the probability of debonding at the interface.
The analysis carried out by Chen et al. [2] has been later extended
by Zappalorto et al. [3] who developed a closed form expression for
the critical debonding stress accounting for the existence of an
ll rights reserved.

: +39 0444 998888.
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interphase zone embedding the nanoparticle. Such a zone is
thought of as characterised by chemical and physical properties
different from those of the matrix, due to inter and supra-molecu-
lar interactions taking place at the nanoscale. On parallel tracks,
the effects of surface elastic constants on the debonding stress of
nanoparticles have been investigated by Salviato et al. [4] who
showed that the range of the nanoparticle radii where those effects
are significant is limited to the nanoscale. Lauke [5] analysed the
energy dissipation phenomena by considering, besides particle
debonding, voiding and subsequent yielding of the polymer. Wil-
liams [6] re-analysed in detail the toughening of particle filled
polymers assuming that plastic void growth around debonded or
cavitated particles is the dominant mechanism for energy dissipa-
tion. Williams [6] further noted that, even if the debonding process
is generally considered to absorb little energy, it is essential to re-
duce the constraint at the crack tip and, in turn, to allow the epoxy
polymer to deform plastically via a void-growth mechanism. A
similar result was found also by the present authors in some pre-
liminary analyses [7,8]. Hsieh et al. [9,10] studied the fracture
toughness improvements resulting from nanomodification of
epoxy resins with silica nanoparticles. Based on experimental
observations, they identified two dominant mechanisms responsi-
ble of toughening improvements, namely localised shear banding
of the polymer (thought of as initiated by the stress concentrations
around the periphery of the nanoparticles) and particle debonding
followed by subsequent plastic void growth. Conversely, other
mechanisms such as crack pinning, crack deflection and immobi-
lised polymer around the particles were not observed. Then, with
the aim to predict the fracture toughness improvements resulting

http://dx.doi.org/10.1016/j.compscitech.2012.07.010
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from nanomodification, they adapted a previous model due to
Huang and Kinloch [13] for rubber modified epoxy polymers. Such
a solution, which was proved to be in a very good agreement with
the experimental data, requires some quantities to be set on the
basis of fracture surface observations. Starting from these experi-
mental observations, it is possible to state that there might be dif-
ferent damaging mechanisms taking place simultaneously at the
nanoscale contributing to the overall fracture toughness of the
nanocomposite, so that the nanocomposite fracture toughness
can be written as GIc ¼ GIm þ

P
iDGi, where GIm is the fracture

toughness of the unloaded matrix and DGi is the fracture tough-
ness improvement due to the ith damaging mechanism. Then, as
pointed out recently by these authors [14], the most effective ap-
proach to predict the nanocomposite toughness should be a ‘‘mul-
ti-mechanism’’ modelling strategy, in which each D Gi contribution
is appropriately determined and weighted according to the specific
case (accounting for the type, the morphology and the functionali-
sation of the nanofiller as well as of the loading conditions).

Some preliminary analyses in this direction have already been
reported in Refs. [7,8]. Those analyses are completed and extended
in the present paper, where the multiscale modelling of the tough-
ness improvement due to plastic yielding around nanovoids is
addressed.

As a basic hypothesis, it is assumed that debonding of nanopar-
ticles takes place and creates a number of nanovoids of the same
diameter of the nanoparticles, which subsequently encounter plas-
tic deformation. This hypothesis is supported by the experimental
observations by Hsieh et al. [9,10]. The major novelty of the pres-
ent paper, with respect to those above mentioned dealing with the
same subject [5,6,9,10], lays on the fact that the effect of an inter-
phase zone surrounding the nanoparticle, characterised by
mechanical properties different from those of the constituents, is
explicitly considered. As shown by Zappalorto et al. [3], the inter-
phase properties, which may be linked to surface functionalizers,
have a significant effect on the debonding stress, especially for
nanoparticle radii below 50 nm. Briefly, the aims of the present pa-
per can be summarised as follows:

– to prove that nanoparticle debonding can be regarded to absorb
little energy, being instead essential to allow the local plastic
yielding of the epoxy polymer;

– to quantify the toughness improvement due to the plastic yield-
ing of nanovoids, thought of as nucleated by debonded
nanoparticles;

– to show that plastic yielding of nanovoids is a highly dissipative
mechanism, causing a high fracture toughness improvement at
low nanofiller content;

– to prove that nanocomposite toughening may be strongly
affected by the size of nanoparticles and by surface treatments.
In particular, the effect of functionalisation is implicitly consid-
ered through the properties and the size of the interphase.

The analysis will be carried out considering two different elas-
tic–plastic laws to describe the material behaviour, namely an elas-
tic power hardening law and an elastic perfectly-plastic law. The
latter is thought of as a simplified assumption to be used in the ab-
sence of detailed information about the hardening behaviour of the
matrix and the interphase. It is worth mentioning here again that
the correct estimation of the fracture toughness improvement
resulting from nanomodification requires the modelling of all the
possible damage mechanisms taking place at the nanoscale.
Accordingly, this work has to be seen as a first part of a more general
multiscale model including the contributions of other mechanisms.

As a further step of the activity in this direction, the present
authors are also going to develop a multiscale modelling of the
polymer shear banding [15].
2. Description of the hierarchical multiscale strategy adopted
for the analysis

2.1. General concepts

A successful engineering application of nanocomposites re-
quires models capable of accounting for their inherent hierarchical
structure which encompasses the nano and the macrolength-
scales. An effective modelling should take into account the charac-
teristic phenomena of each length-scale and bridge their effects
from the smaller scale to the macroscale [14]. For this reason, in
the present analysis, we deal with three different length scales,
macro-, micro-and nano-, each of them being characterised by
mechanical quantities which are, by a conceptual point of view,
different. Accordingly, we will use terms like ‘‘macroscale stress’’
and ‘‘microscale stress’’. Thus, in order to avoid misunderstandings
it is worth giving the correct definitions for the quantities used at
each scale, as well as to briefly discuss the link between them.

The macro-scale system and the macro-scale quantities: the mac-
roscale system is thought of as an amount of material over which
all the mechanical quantities (such as stresses and strains) are re-
garded as averaged values [16] and they are supposed to be repre-
sentative of the overall material behaviour. Within this scale, it is
assumed that the material is homogeneously and continuously dis-
tributed over its volume ’’so that the smallest element cut from the
body possesses the same specific physical properties as the body’’
[17]. So long as the geometrical dimensions defining the form of
the body are very large in comparison with the dimensions rele-
vant at the smaller scales (such as the size of a single nanofiller),
the assumption of homogeneity can be used with great accuracy.
In addition, if the nanofiller is randomly oriented and uniformly
distributed, the material can also be treated as isotropic.

The macroscale system accounts for the loading conditions and
the presence of material defects (like macroscopic cracks) and all
the governing equations are dependent only on macroscopic aver-
aged quantities.

The micro-scale system and the micro-scale quantities: the micro-
scale system is thought of as being sufficiently small to be re-
garded, mathematically, as an infinitesimal volume of the macro-
scale one. At the same time it has to be, by definition, large enough
to be statistically representative of the properties of the material
system. The latter hypothesis is supposed to hold valid as far as
the nanofiller is uniformly distributed and dispersed over the vol-
ume. Within this scale, all the mechanical properties are supposed
to be pointwise values [16]. The micro-scale system is often re-
garded as a Representative Volume Element (RVE).

The nano-scale system: the nanoscale system represents a single
unit cell of those compounding the micro-scale system; it accounts
for the material morphology (such as nanofiller type and size).

It is finally worth mentioning that the definitions above given
are not necessarily limited to the analysis of nanostructured mate-
rials, but they have a more general validity and they can be applied
to any system and application interested by three length scales (a
large-scale, a medium-scale and a small-scale) fulfilling the
requirement that the ‘‘large-scale’’ is much larger than the ‘‘med-
ium-scale’’, which, in turn, is much larger than ‘‘small-scale’’.
2.2. Relationship between stresses and strains in the different systems

Let consider a general boundary value problem in statics; the
macro-scale stress or strain, r or e, can be regarded as a general
function of material coordinates {r, e} = {f1(X1, X2, X3), f2(X1, X2,
X3)}.

According to [16,18,19], functions fi, which are supposed to
satisfy the governing equations of statics at the macroscale, can
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be regarded as an average value over a RVE
fr; eg ¼ f�r; �eg ¼ 1

V

R
V r̂dV ; 1

V

R
V êdV

� �
where r̂ and ê are the mi-

cro-scale stress and strain distributions and V is the volume of
the RVE. In principle, there might exist an infinite number of
fr̂; êg distributions over the V volume resulting in the same aver-
age value, but only one corresponds to the particular boundary va-
lue one addresses to. The solution comes from the governing
equation and the boundary conditions for this scale which, accord-
ing to conventional micromechanics, can be expressed, without
any loss of generality, within the frame of continuum mechanics.

However, within a multiscale approach to the problem, the
knowledge of the correct microscale distributions within the
RVE, fr̂; êg, is not strictly necessary. Indeed, the Mori–Tanaka the-
orem allows to disregard of the actual microscale fields and to
approximate the stress or the strain acting on the boundary of a
single nano-inhomogeneity (nanoscale). This can be carried out
taking advantage of the Global Concentration Tensors of Eshelby
diluite solution and of the mean value for the stress/strain fields
over the RVE which, in turn, equates the macroscale one.

2.3. Multiscale strategy to analyse debonding of nanoparticles and
subsequent plastic yielding

2.3.1. Description of the nanoscale system
In this work particular attention is paid to the interphase zone

surrounding the nanoparticle, which might be characterised by
chemical and physical properties different from those of the con-
stituents. Indeed, different from traditional microsized composites,
in nanoscale materials and structures, the surface effects become
significant [20–22], due to the high surface/volume ratio and, for
this reason, the amount of interphase volume may represent a large
part of the matrix. Recently, Zappalorto et al. [3] developed a closed
form expression for the critical debonding stress accounting for the
existence of an interphase zone of properties different from those
of the matrix. Since different functionalizers lead to different elas-
tic properties of the interphase, this solution shows that the deb-
onding stress is affected by the surface treatment depending also
on the interphase radius to the nanoparticle radius ratio, a/r0.

Unfortunately, the data available so far in the literature about
the interphase zone are not enough to precisely formulate the
law of variation of its properties across the thickness, as well as
its size [23]. Thus, according to [3,24,25], in this work we assume
that a through-the-thickness average is representative of the over-
all property distribution within the interphase. Consequently, the
interphase is supposed to be homogeneous and isotropic.

In the light of this, the system under investigation at the nano-
scale, shown in Fig. 1a and b, is constituted by:

– a spherical nanoparticle of radius r0, which creates a nanovoid
of the same diameter;

– a shell-shaped interphase of external radius a and uniform
properties;

– a matrix of radius b loaded by a hydrostatic stress rh, b being
much greater than a and r0.

The properties required by the analysis can be computed by
means of numerical simulations carried out within the frame of
MD as done for example by Odergard et al. [24] and Yu et al.
[25], which provide, as outputs, the radial extension of the inter-
phase as well as the elastic properties averaged through the thick-
ness. Alternatively, for a specific system, they could be fitted a
posteriori on the basis of some experimental results.

2.3.2. Application of the multiscale strategy
Let consider a macrosized crack in a nano-modified matrix (see

Fig. 2). In agreement with [6,26,27], it can be assumed that only the
hydrostatic stress component of the crack tip stress field is of ma-
jor importance for the present analysis. This choice is justified by
the spherical symmetry of the problem at the nanoscale and the
high constraint effects arising close to the crack tip. Indeed, Rice
and Tracy [26] showed that, when the mean normal stress is large
enough, the volume changing contribution to void growth is much
larger than the shape changing part, so that growth is basically
spherical.

Under the hypothesis of plane strain conditions, such a compo-
nent turns to be:

rh ¼
rx þ ry þ rz

3
¼ 2ð1þ moÞKI

3
ffiffiffiffiffiffiffiffiffiffi
2pq

p cos
/
2

ð1Þ

where KI and mo are the Stress Intensity Factor of the macroscopic
stress fields and the Poisson’s ratio of the nanocomposite,
respectively.

Within a multiscale approach to the problem, according to the
concepts discussed in Sections 2.1 and 2.2, the macroscale stress,
rh, can be regarded as the average of the microscale stresses over
a RVE (see again Fig. 2). The bridge with the nanoscale can be
established by means of the Mori–Tanaka approach, so that the
hydrostatic stress component around the nanoparticle can be
approximated by:

rnðq;/Þ ¼
rh

Ch
¼ 1

Ch

2ð1þ moÞKI

3
ffiffiffiffiffiffiffiffiffiffi
2pq

p cos
/
2

ð2Þ

where Ch is the reciprocal of the hydrostatic part of the global stress
concentration tensor [3]:

Ch ¼
Km

Kp
f ð3Þ

with

f ¼ ð3Ka þ 4GmÞð3Kp þ 4GaÞ
ð3Ka þ 4GaÞð3Km þ 4GmÞ

þ 12

� ðKa � KpÞðGm � GaÞ
ð3Ka þ 4GaÞð3Km þ 4GmÞ

r0

a

� �3
þ 4

Gm

Km

3Km þ 4Ga

3Km þ 4Gm

� Kp � Ka

3Ka þ 4Ga

r0

b

� �3
þ 4

Gm

Km

3Kp þ 4Ga

3Km þ 4Gm

Ka � Km

3Km þ 4Gm

a
b

� �3
ð4Þ

Here Km, Ka, Kp are the bulk moduli of the matrix, the interphase and
the nanoparticle, and Gm, Ga, Gp are the shear elastic moduli of the
matrix, the interphase and the nanoparticle. Further accounting
for the conditions b� a, r0 and Kp� Km, Ka, Ch simplifies:

Ch ¼
nþ 4� 4 � ð1� vÞðr0=aÞ3

ðnþ 4vÞ 3ð1�mmÞ
1þmm

� � ¼ Ch;0
nþ 4� 4 � ð1� vÞðr0=aÞ3

ðnþ 4vÞ ð5Þ

where v = Ga/Gm,n = 3Ka/Gm and Ch,0 is the reciprocal of the hydro-
static part of the global stress concentration tensor evaluated by
neglecting the interphase (v = 1).

Debonding at a nanoparticle takes place whenever the hydro-
static stress component around the nanoparticle reaches a critical
value, rcr. Then, the extension of the debonding region (DBR),
meant as the region around the crack tip confining all the debond-
ed particles, can be assessed by simply equating rn, Eq. (2), with
the critical debonding stress rcr:

rcr ¼ rnðq;/Þ ¼
1
Ch
� 2ð1þ moÞKI

3
ffiffiffiffiffiffiffiffiffiffi
2pq

p cos
/
2

ð6Þ

In Eq. (6) rcr can be estimated by [3]:

rcr ffi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4c
r0

Em

1þ mm

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vð4þ nÞ � nðv� 1Þðr0=aÞ3

4þ nþ 4ðv� 1Þðr0=aÞ3

s

¼ rcr;0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vð4þ nÞ � nðv� 1Þðr0=aÞ3

4þ nþ 4ðv� 1Þðr0=aÞ3

s
ð7Þ
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Fig. 1. Description of the system under analysis at the nanoscale (a). Spherical coordinate system and stress components used to describe the stress field around nanovoids
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Fig. 2. Description of the multiscale system under analysis.

1686 M. Zappalorto et al. / Composites Science and Technology 72 (2012) 1683–1691
where rcr,0 is the debonding stress evaluated by neglecting the
interphase zone [2].

Solving Eq. (6) by q results in:

q�ð/Þ ¼ 1

ðChÞ2
� 2ð1þ moÞ2K2

I

9pr2
cr

cos2 /
2

� �
ð8Þ
The amount of nanoparticles subjected to debonding, Np, as well
as the total surface subjected to debonding, Sp, can then be calcu-
lated as:

Np ¼
R

V
fp0

4=3pr3
0

dV ¼ 9
32

fp0

r3
0

1
ðChÞ2
� 2ð1þm0Þ2K2

1
9pr2

cr

h i2

Sp ¼ Np � 4pr2
0 ¼ 9

8 p� fp0 � A2

r0

ð9a:bÞ
Eq. (9a) can be also re-written in the following normalised
form:

Np

Np;0
¼ Ch;0rcr;0

Chrcr

� �4

ð9cÞ
where Np,0 is the the amount of nanoparticles subjected to debond-
ing when neglecting the interphase.

In this work, the DBR is thought of as the active process zone.
Indeed, it is assumed that the crack-induced stress field causes
debonding of nanoparticles, resulting in a distribution of nanovoids
which later undergo plastic yielding; both debonding of nanoparti-
cles and the subsequent plastic yielding of nanovoids represent
mechanisms acting for energy dissipation at the nanoscale.

It is worth mentioning here that the presence of free volumes in
polymers, which might be nanometric in size, can trig nanovoid
plastic void growth within the region in between nanoparticles,
which is characterised by a high level of dilatational stress. How-
ever this phenomenon has not been considered in the present
work.

Denoting with Ui the energy produced at the nanoscale for the
single mechanism considered, according to the adopted multiscale
system, the strain energy density in a RVE (microscale) can be cal-
culated as:

ui ¼ Ui �
3f p0

4pr3
0

ð10Þ

where fp0 is the volume fraction of the nanovoids (which coincides,
by hypothesis, with the initial volume fraction of nanoparticles). Fi-
nally, the fracture toughness enhancement due to the considered
mechanism can be determined, according to [5,13,28,29], as:

DGi ¼ 2�
Z q�ð/¼p=2Þ

0
ui dq ð11Þ

The problem of determining the overall fracture toughness
enhancement is reconverted, in this way into finding the energy
produced at the nanoscale by debonding and the plastic yielding
of a nanovoid, and thus requires a stress and strain analysis at such
scale level.
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3. Modelling of debonding-induced toughness improvement

The energy produced at the nanoscale by debonding of a single
nanoparticle is:

Udb ¼ cdb � 4pr2
0 ð12Þ

where cdb is the interfacial fracture energy. Accordingly, the strain
energy density in a RVE (microscale) can be calculated as:

udb ¼ Udb �
3f p0

4pr3
0

¼ cdb � 4pr2
0 �

3f p0

4pr3
0

¼ 3
cdb

r0
fp0 ð13Þ

Finally, the macroscale increment in terms of Strain Energy Re-
lease Rate can be estimated by Eq. (11) and turns out to be:

DGdb ¼ 2�
Z q�ð/¼p=2Þ

0
udbdq ¼ 3

cdb

r0
fp0A

¼ 3� cdb

r0
� 1

ðChÞ2
� 2ð1þ moÞ2K2

I

9pr2
cr

� fp0 ð14Þ

where rcr is given by Eq. (7).
By further noting that G ¼ K2

I =Eo � 1� m2
o

	 

, the toughness

improvement due to debonding becomes:

DGdb ¼
2

3p
� cdb

r0
� 1þ mo

1� mo
� Eo

r2
crðChÞ2

( )
� fp0 � GIc

¼ fp0 � wdb � GIc ð15Þ

where now GIc and E0 are the fracture toughness and the elastic
modulus of the nanocomposite and wdb is the term in curly brack-
ets. Since, according to [5,13], the overall fracture toughness can
be written as:

GIc ¼ GIm þ DGdb ð16Þ

being GIm the matrix fracture toughness, Eq. (16) can also be re-
written as:

DGdb

GIm
¼ fp0 � wdb

1� fp0 � wdb
ð17Þ
0 
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Fig. 3. Simplified stress–strain law for power-hardening material with hardening
exponent n.
4. Plastic yielding of nanovoids

4.1. Elastic–plastic analysis

Displacement and stress fields are determined here within the
frame of the Cauchy Continuum Theory, regarding constituents
as isotropic materials, in agreement with some recent works about
nanocomposites [2,23,30]. It is assumed that debonding of nano-
particles takes place and creates a number of nanovoids of the
same diameter of the nanoparticles. Whenever the stress field
around a nanovoid is high enough to cause local yielding, denoting
by RP the extension of the plastic zone, two different conditions are
possible:

– the entire interphase and a part of the matrix are yielded
(RP > a);

– only a part of the interphase is yielded (RP < a).

To simplify the mathematical treatise to the problem, the first
condition is considered. Moreover, in agreement with the ‘‘Averag-
ing Stress Concept’’ [31–33], it is assumed that the ‘‘effective
macro-scale stress’’ to be considered in fracture predictions
equates the mean value of crack induced stress, rh, within the DBR:

rh ¼ rh ¼
1

q�ð/ ¼ p=2Þ �
Z q�ð/¼p=2Þ

0
rh dq ¼ 2� Chrcr ð18Þ
where the averaging path (/ = p/2) matches that suggested in Eq.
(11).

4.1.1. A strain hardening behaviour for the interphase and the matrix
When detailed information about the elastic–plastic response of

the matrix and the interphase is available, the materials can be
thought of as obeying to an elastic-power hardening plastic law.

Thanks to the spherical symmetry of the problem, equilibrium
and compatibility equations can be written as:

@rrr

@r
þ 2� rrr � rhh

r
¼ 0 ð19Þ

@ehh

@r
¼ err � ehh

r
ð20Þ

The hardening behaviour of materials can be treated in a simpli-
fied way by considering an elastic response up to the yield limit rY

and thereafter a power law for stresses and strains in the plastic re-
gion [34,35]:

�eP ¼ E � �rP if �rP 6 rY

�eP
eY
¼ �rP

rY

� �n
if �rP P rY

8<: ð21Þ

where �rP and �eP are the equivalent stress and the equivalent strain,
respectively, while eY = rY/E.

Eq. (21) is represented in Fig. 3 for different hardening expo-
nents, n.

Consider the coordinate system shown in Fig. 1b. Hencky’s
equation links the plastic components of the strains to the plastic
components of the stresses [34] and for the law given by Eq. (21)
turns out to be:

eðplÞ
ij ¼ ksðplÞ

ij ¼
3
2

�eP

�rP
sðplÞ

ij ¼
3
2

eY

rY

�rP

rY

� �n�1

sðplÞ
ij ð22Þ

where

sðplÞ
ij ¼ rij � rh ¼ rij �

rrr þ 2rhh

3
ð23Þ

is the deviatoric component of stresses. Thanks to the Tresca yield-
ing condition the equivalent plastic stress can be evaluated as:

�rP ¼ rhh � rrr ð24Þ

Accordingly, the hydrostatic stress component of the plastic
stress tensor turns out to be:

rh ¼
rrr � 2rhh

3
¼ rðplÞ

rr þ
2
3

�rP ¼ rðplÞ
hh þ

1
3

�rP ð25Þ
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Then

sðplÞ
rr ¼ rðplÞ

rr � rh ¼ �
2
3

�rP sðplÞ
hh ¼ rðplÞ

hh � rh ¼
1
3

�rP ð26a:bÞ

Finally, the plastic strain components are:

eðplÞ
rr ¼ ksðplÞ

rr ¼ �eY
�rP

rY

� �n

eðplÞ
hh ¼ ksðplÞ

hh ¼
1
2
eY

�rP

rY

� �n

ð27a:bÞ

Substituting Eq. (27) into the compatibility equation, Eq. (20),
results in:

n
@�rP

@r
þ 3

�rP

r
¼ 0 ð28Þ

The general solution of Eq. (28) can be sought in the form:

�rP ¼ Cr�3=n ð29Þ

At the same time, substituting Eqs. (29) and (24) into the equi-
librium equation results in:

rðplÞ
rr ¼ eC � 2

3
Cn r�3=n ð30Þ

Then the solutions for stress and displacement fields in the plas-
tic zone are:

rðplÞ;a
rr ¼ C2 �

2
3

C1na r�3=na �ra
P ¼ C1r�3=na uðplÞ;a

¼ 1
2

eYa

r2

C1

rYa

� �na

ð31Þ

when r < a and

rðplÞ;m
rr ¼ C4 �

2
3

C3nm r�3=nm �rm
P ¼ C3r�3=nm uðplÞ;m

¼ 1
2

eYm

r2

C3

rYm

� �nm

ð32Þ

when a < r < RP.
Outside the plastic core the behaviour is linear elastic and stress

and displacement fields can be described as [3]:

rðelÞ
rr ¼ Em

A
1� 2mm

� 2
B

r3ð1þ mmÞ

� �
rðelÞ

hh

¼ Em
A

1� 2mm
þ B

r3ð1þ mmÞ

� �
uðelÞ ¼ Ar þ B

r2 ð33Þ

where Em and mm are the matrix Young modulus and Poisson’s
ratio.

Boundary conditions to the problem can be written as follows:

rðplÞ;a
rr ðr ¼ r0Þ ¼ 0

rðplÞ;a
rr ðr ¼ aÞ ¼ rðplÞ;m

rr ðr ¼ aÞ
uðplÞ;aðr ¼ aÞ ¼ uðplÞ;mðr ¼ aÞ
�rPðr ¼ RPÞ ¼ rYm

rðelÞ;m
rr ðr ¼ bÞ ¼ rh

rðelÞ;m
hh ðr ¼ RPÞ � rðelÞ;m

rr ðr ¼ RPÞ ¼ rYm

rðplÞ;m
rr ðr ¼ RPÞ ¼ rðelÞ;m

rr ðr ¼ RPÞ

ð34a:gÞ

The solutions of the first six equations of the previous system
are:
C1 ¼ R3=na
P rYa

eYm

eYa

� � 1
na

C2 ¼
2
3

narYa
Rp

r0

� �3=na eYm

eYa

� � 1
na

C3 ¼ R3=nm
P rYm

C4 ¼
2
3

narYa
Rp

a

� �3=na eYm

eYa

� � 1
na a

r0

� �3=na

� 1

" #
þ nmrYm

Rp

a

� �3=nm
( )

A ffi rh

Em
ð1� 2mmÞ ¼

rh

3Km

B ¼
rYmR3

pð1þ mmÞ
3Em

ð35a:fÞ

Instead, the last equation can be re-written as:

rh �
2
3
rYmð1� nmÞ ¼

2
3

narYa
Rp

a

� �3=na eYm

eYa

� � 1
na a

r0

� �3=na

� 1

" #(

þ nmrYm
Rp

a

� �3=nm
)

ð36Þ

Eq. (36) can be easily solved numerically. Alternatively the
assumption nm � na results in the following approximation for RP:

RP ¼ a �
3
2

rh
rYm
� ð1� nmÞ

na
rYa
rYm

eYm
eYa

� � 1
na a

r0

� �3=na

� 1
� �

þ nm

8>><>>:
9>>=>>;

nm
3

ð37Þ

Substituting Eq. (37) into Eq. (35f) allows one to re-write coef-
ficient B as follows:

B ¼
rYmR3

pð1þ mmÞ
3Em

¼ 6rYm

Gm
� a3 �

3
2

rh
rYm
� ð1� nmÞ

na
rYa
rYm

eYm
eYa

� � 1
na a

r0

� �3=na

� 1
� �

þ nm

8>><>>:
9>>=>>;

nm

ð38Þ

In principle, the displacement increase at r = b, between the
yielded and the un-yielded states, should be equal to:

Du ffi ðB� BÞ
b2 ð39Þ

where B is given by Eq. (38) and B is, instead [3]:

B ¼ rha3 4GaðKm � KaÞ þ Kað4Ga þ 3KmÞðr0=aÞ3

4Km Gað4Gm þ 3KaÞ þ 3KaðGm � GaÞðr0=aÞ3
h i ð40Þ

However, since B� B, Du can be reasonably approximated by:

Du ffi B

b2 ¼
6rYm

Gm
� a

3

b2 �
3
2

rh
rYm
� ð1� nmÞ

na
rYa
rYm

eYm
eYa

� � 1
na a

r0

� �3=na

� 1
� �

þ nm

8>><>>:
9>>=>>;

nm

ð41Þ

and the energy produced at the nanoscale by plastic yielding of a
single nanovoid results:

UP ¼ F � Du

¼ 4prh
6rYm

Gm
� a3 �

3
2

rh
rYm
� ð1� nmÞ

na
rYa
rYm

eYm
eYa

� � 1
na a

r0

� �3=na

� 1
� �

þ nm

8>><>>:
9>>=>>;

nm

ð42Þ
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Finally, the strain energy density in a RVE (microscale) can be
calculated as:

uP ¼ UP �
3f p0

4pr3
0

¼ rh
18rYm

Gm
� a

r0

� �3

�
3
2

rh
rYm
� ð1� nmÞ

na
rYa
rYm

eYm
eYa

� � 1
na a

r0

� �3=na

� 1
� �

þ nm

8>><>>:
9>>=>>;

nm

fp0 ð43Þ
4.1.2. Elastic-perfectly plastic behaviour for the interphase and the
matrix

In the absence of detailed information about the hardening
behaviour of the matrix and the interphase, as a simplified
assumption, the materials can be thought of as obeying to an elas-
tic-perfectly plastic law.

To this end, it is easier to reformulate the problem from the
beginning, instead than consider this case as the limit condition
of the hardening solution for n tending to infinity.

With reference to the coordinate system shown in Fig. 1b,
invoking the Tresca yielding criterion, the yielding condition and
the equilibrium equation result in [6,36]:

�rP ¼ rhh � rrr ¼ rY ð44Þ
@rrr

@r
þ 2� rrr � rhh

r
¼ 0 ð45Þ

where rY is the material yield stress and r < RP.
Substituting Eq. (44) into Eq. (45) one obtains:

@rrr

@r
� 2� rY

r
¼ 0 ð46Þ

The solution for rrr in the plastic zone is then:

rðplÞ;a
rr ¼ C1 þ 2rYa � LnðrÞ when r < a ð47aÞ

rðplÞ;m
rr ¼ C2 þ 2rYm � LnðrÞ when a < r < RP ð47bÞ

where rYa and rYm are the yield stress of the interphase and of the
matrix, respectively. Applying the appropriate boundary conditions,
one finally obtains:

RP ¼ a � r0

a

� �rYa
rYm � e

rh
2rYm

�1
3

� �
B

¼ 6rYm

Gm
a3 � r0

a

� �3rYa
rYm � e

3rh
2rYm

�1

� �
ð48a:bÞ

So that:

Du ffi ð1þ mmÞ rYm

3Em
� a3

b2

r0

a

� �3�rYa
rYm e

3rh
2rYm

�1

� �
ð49Þ

The energy produced at the nanoscale by plastic yielding of a
single nanovoid is then:

UP ¼ F � Du

¼ 4prh �
ð1þ mmÞ rYm

3Em
� a3 � r0

a

� �3�rYa
rYm e

3rh
2rYm

�1

� �
ð50Þ

Accordingly, the strain energy density in a RVE (microscale) can
be calculated as:
uP ¼ UP �
3f p0

4pr3
0

¼ fp0 �
ð1þ mmÞ rYmrh

Em
� a

r0

� �3� 1�rYa
rYm

� �
� e

3rh
2rYm

�1

� �
ð51Þ
4.2. Fracture toughness enhancement due to plastic yielding of
nanovoids

Once the microscale strain energy density has been determined,
the macroscale fracture toughness enhancement can be computed
by Eq. (11).

The hypothesis formulated at the beginning of Section 4.1 by
which rh ¼ �rh, with the further substitution G ¼ K2

I 1� m2
o

	 

=Eo, al-

lows one to rewrite Eq. (11) as follows:

DGpy ¼ 2q� / ¼ p
2

� �
� uP ¼

uP

ðChÞ2
� 2GIc

9pr2
cr
� Eo

1þ mo

1� mo
ð52Þ

Substituting Eqs. (51) and (43) into Eq. (52) one obtains:

DGpy¼GIcfp0
4

9pCh
� Eo

Em

ð1þmoÞð1þmmÞ
1�mo

rYm

rcr

a
r0

� �3� 1�rYa
rYm

� �
e

3Ch
rcr
rYm
�1

� �8><>:
9>=>;

¼ fp0�wp�GIc

ð53Þ

for the elastic perfectly plastic case, and:

DGpy¼GIcfp0
8

pCh
� 1þmo

1�mo

Eo
Gm

rYm
rcr
� a

r0

� �3
�

3Ch
rcr
rYm
�ð1�nmÞ

na
rYa
rYm

eYm
eYa

� � 1
na

a
r0

� �3=na

�1

� �
þnm

2664
3775

nm
8>><>>:

9>>=>>;
¼ fp0�wp�GIc

ð54Þ

for the power hardening case, respectively. In both cases, wp is the
term in curly brackets and quantifies the energy dissipation at the
nanoscale by plastic yielding.

Since, according to [28], the overall fracture toughness can be
written as:

GIc ¼ GIm þ DGpy ð55Þ

being GIm the fracture toughness of the pure (unloaded) matrix, the
fracture toughness improvement due to plastic yielding of nanov-
oids can be written in the following normalised form:

DGpy

GIm
¼

fp0 � wp

1� fp0 � wp
ð56Þ
5. Results and discussion

In the present work, a general multi-scale approach has been
proposed for the damage analysis at the nanoscale induced by
the plastic yielding of nanovoids. It has been assumed that the
nanofiller is uniformly dispersed and distributed within the vol-
ume, agglomeration being neglected at present.

By equating the hydrostatic component of the stress field with-
in the nanoscale to the critical debonding stress, estimated through
an expression recently proposed by the authors, Eq. (7), [3] the re-
gion containing all the damage due to debonding has been deter-
mined in closed form and is given by Eq. (8). This zone, named
Debonding Region (DBR), is thought of as the active process zone.
Finally, by means of an energy balance, according to [28,29] the
fracture toughness improvement related to nanoparticle debond-
ing has been determined.
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An example of application of Eq. (17) is reported in Fig. 4, which
shows the normalised fracture toughness improvement due to
debonding, DGdb/GIm, versus the nanofiller volume fraction; three
different interphase size and properties have been considered. It
is evident that, in all cases, the improvement is rather limited (less
than 5%). This means that the energy absorbed through nanoparti-
cle debonding is almost negligible.

However, it is quite easy to prove that debonding is a necessary
condition for the subsequent plastic yielding around nanovoids
created by debonded nanoparticles, such a toughening mechanism
being of primary concern. With the aim to prove that, as a first
approximation, we can substitute the linear elastic solution for
the undebonded particle [3] within the Tresca yielding condition.
By so doing, the yielding condition can be written as:

rrr � rhh ¼ rn � ð1� 2maÞ=ð1� maÞ > rYa ð57Þ

where rYa is the yield strength of the interphase. As soon as the
interphase behaves plastically,ma tends to 0.5 and the yielding con-
dition can never be satisfied. This suggests that nanoparticle deb-
onding can be thought of as a ‘‘secondary toughening mechanism’’
being more important as a trigger for plastic yielding [6].

This result is supported by the experimental observation by
Hsieh et al. [9,10] and has urged the authors to develop a more
insightful analysis, focusing the attention also on the number of
nanovoids nucleated from debonding. In Fig. 5 the normalised
number of nanovoids predicted by the model, Eq. (9c), is shown
as a function of a/r0. It is evident that the number of possible void
grow sites is highly dependent on the interphase properties and
that, in particular, softer interphases lead to an higher number of
nanovoids.

In the second part of the paper an analysis of the energy spent
by the plastic yielding of nanovoids has been carried out. Two dif-
ferent material behaviours have been investigated, the power
hardening and the elastic perfectly plastic behaviour. The analysis
has highlighted that the elastic and plastic properties of the inter-
phase as well as the nanovoid size play a lead role in the fracture
toughness improvements due to this mechanism. In particular
the toughness increment to the matrix toughness ratio has been
plotted in Fig. 6 as a function of the nanoparticle volume fraction
for different values of the nanovoid diameter. The great influence
exerted by the nanovoid diameter, d0, is evident, the ratio DGpy/
GIm rapidly decreasing as d0 increases. This strong size effect is in
agreement with a large number of experimental results. Differ-
ently, Fig. 7 shows the substantial effect of the interphase proper-
ties on the fracture toughness improvement. Once again the model
agrees with the experimental evidence: as different functionalizers
lead to different properties of the interphase, nanocomposite
toughening may be strongly affected by surface treatments. It is
further important to note that, different from debonding, the plas-
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Fig. 7. Plots of DGpy/GIm according to Eq. (53) versus the nanovoid diameter:
different interphase properties. The bulk material properties match those of the
epoxy resin used by Chen et al. [2].
tic yielding of nanovoids is a dominant mechanism for energy dis-
sipation, resulting in high fracture toughness improvements. This
is clearly shown in Figs. 6 and 7. An example of the effect of the
hardening exponent is finally shown in Fig. 8. The results indicate
that the effect of the hardening exponent is, in general, not negli-
gible, higher n values resulting in higher fracture toughness
improvements. However, it has to be mentioned that this result
strongly depends on the particle and interphase sizes. It is worth
mentioning that a correct prediction of the fracture toughness of
the nanoparticle filled polymers should include, besides the effect
of the plastic yielding of nanovoids, the amount of energy dissi-
pated by the localised shear banding of the polymer (caused by
the stress concentrations around the periphery of nanoparticles).



0

0.1

0.2

0.3

0.4

0.5

0% 2% 4% 6%

ΔG
py

/ G
Im

Nanofiller volume fraction, fp0 [%]

Em= 2.2 GPa 
νm= 0.4, a/r0= 1.2
χ= 2, ξ=28 
σYm= 68 MPa
σYa= 75 MPa
r0=6 nm

na=∞

5
8
12

na

Fig. 8. Influence of the hardening exponent on the DGpy/Gm ratio, according to Eqs.
(53) and (54).

M. Zappalorto et al. / Composites Science and Technology 72 (2012) 1683–1691 1691
This last mentioned mechanism is not dealt with in this paper, the
mechanics of damage being much different with respect to that of
the plastic yielding (see also [9,10]). As a consequence, the assess-
ments based solely on the multiscale model developed in this work
will inevitably result in an underestimation of the fracture tough-
ness for nanoparticle filled polymers. This is the reason why a di-
rect comparison with experimental results is not reported here.
Moreover one should note that, as a basic assumption of the pres-
ent work, the nanofiller is supposed to be uniformly dispersed and
distributed, neglecting the high tendency to agglomerate exhibited
by nanoparticles beyond a certain value of the volume fraction. It is
clear that this approximation limits the application of the model to
low nanofiller volume fractions.

6. Conclusions

The present work provides a hierarchical multi-scale model to
assess the toughness improvement due to plastic yielding around
nanovoids, thought of as nucleated by debonding of nanoparticles.
Neglecting, for the time being, possible effects of nanofiller
agglomeration, the inter- and supra-molecular interactions be-
tween nanofillers and the polymer are accounted for by introduc-
ing an interphase embedding the nanovoid, with mechanical
properties different from those of the matrix. It has been shown
that plastic yielding is a highly dissipative mechanism, causing a
high fracture toughness improvement at low nanofiller content. Fi-
nally it has been shown that nanocomposite toughening may be
strongly affected by the size of nanoparticle and surface
treatments.
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