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Abstract. A closed form solution for the stress fields around a rigid nanoparticle 
under uniaxial tensile load is provided. The work explicitly accounts for the presence, 
around the nanoparticle, of an interphase of thickness comparable to the particle size 
and different elastic properties from those of the matrix. The solution allows one to 
determine, in closed form, the stress concentration around nanoparticles relevant for 
fracture and strength assessments of polymer nanocomposites. 
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1. Introduction 
In nanomodified polymers, as the filler size is decreased to the nanoscale, intra- and 
supra-molecular interactions lead to the emergence of an interphase whose properties 
differ from those of both constituents and whose thickness may be comparable to the 
particle size. Sevostianov and Kachanov (2006, 2007) showed that the effect of such 
interphase on the overall properties may be substantial, the controlling parameters 
being the ratio of the interphase thickness to the particle size and the variability of the 
properties across the interface thickness. 
The calculation of the stress concentration around a particle embedded within a 
matrix has been dealt with by many authors, but there are only few works considering 
interphases. The aim of the present work is to fill this gap and to determine the stress 
fields around a rigid nanoparticle under uniaxial tensile load. The work explicitly 
accounts for the presence of an interphase around the nanoparticle, of thickness 
comparable to the particle size and whose elastic properties differ from those of the 
matrix. The solution allows one to determine, in closed form, the stress field around 
the nanoparticle.  
 
 
2. Analytical framework 

2.1 Stress field solution 
Let consider a rigid spherical nanoparticle of radius r0 embedded by a spherical shell-
shaped interphase of radius a, both of them being enveloped into a infinite matrix 
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(figure 1a). The matrix and the interphase are elastic, homogeneous and isotropic 
materials and the interphase has elastic properties different from those of the polymer 
matrix. This system is loaded by a remotely applied uniaxial tension along direction 
X2 (figure 1a). 
The solution for the displacement field around a particle embedded in an infinite and 
elastic body loaded by axisymmetrical loads was derived by Goodier (1933) and  
Oldroyd (1953). Lauke et al. (2000) later analysed the problem of a coated particle 
embedded within a matrix and noted that, with reference only to the deviatoric part of 
the elastostatic solution, the displacement fields for each sub-dominion of such a 
problem can be sought in the following form (Lauke et al., 2000): 
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where subscript k=m,a,p denotes the sub-domain (matrix, interphase and 
nanoparticle) and  r and θ2 are coordinates shown in figure 1b; Gk is the shear elastic 
modulus and λk is Lame’s constant. 

 
Figure 1.  Spherical nanoparticle embedded in a shell-shaped interphase zone under unidirectional load 
(a).  Polar coordinate system used to describe the stress field around the nanoparticle (b). 
 

Hence the components of stresses due to the deviatoric part of the remotely applied 
uniaxial stress can be written as: 
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Unknown coefficients ak, bk, ck, and dk can be determined from the equilibrium and 
compatibility conditions: 
 
At r=r0  a,rp,ra,d,rrp,d,rra,p,a,rp,r uuuu θθθθ τ=τσ=σ==  (6) 
At r=a   m,ra,rm,d,rra,d,rrm,a,m,ra,r uuuu θθθθ τ=τσ=σ==  (7) 

At ∞→r  ( ) 22m,r2
2

m,d,rr sincos1cos3
3
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σ

=σ θ   (8) 

 
Noting that displacement singularities in the nanoparticle can be avoided if and only 
if bp=dp=0 , boundary conditions result in a system of 10 equations, providing the 10 
unknown constants ap, cp, aa, ba, ca, da, am, bm, cm, dm.  
It is worth mentioning here that in his work Lauke et al. (2000) did not solved in 
closed form the problem but stated that the solution of the system of 10 equations for 
the 10 unknown coefficients was only possible numerically.   
The system of boundary conditions is solved in closed form in this work, assuming 
the particle is much stiffer than the matrix and the interphase (as in the case of 
polymers modified by nanoparticles). After some algebraic manipulations the 
following solution for unknown coefficients can be given: 
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where σ is the remotely applied stress while, denoting with 0r/aa = , other auxiliary 
parameters are defined as: 
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2.2 Closed form solution for the stresses around the nanoparticle 
The maximum concentration of stresses within the interphase always takes place 
around the nanoparticle, at r=r0. The deviatoric components of stresses can be re-
written as: 
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To obtain the complete stress components, a,ijσ , the stress fields due to deviatoric part 
of remote uniaxial stress has to be superimposed to stress components due to the 
hydrostatic part of the remote uniaxial stress, which can be determined as (Zappalorto 
et al., 2011): 
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Figure 2. Plots of the stress components along the nanoparticle periphery. Softer interphase. 

 
As it can be seen from figures 2 and 3, the normalised stress distributions around the 
periphery of the nanoparticle is largely influenced by the interphase elastic properties, 
both in the case of softer (figure 2) or harder (figure 3) interphases.  It is interesting to 
note that, in all cases, the maximum radial stress occur at the pole of the particle 
(θ2=0) while the maximum von Mises stress (σvM) occurs approximately at θ2= 40 
degrees. The elastic properties of the interphase affect not only the stress 
distributions, but, especially, the maximum values of the von Mises stress (figure 4) 
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around the nanoparticle. It can be seen indeed that the stiffer the interphase the higher 
the maximum von Mises stress, which reaches an almost asymptotic value for a/r0 
higher than 2. 
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Figure 3. Plots of the stress components along the nanoparticle periphery. Harder interphase. 

 

0.4

0.8

1.2

1.6

1 1.5 2 2.5 3

σ v
M

 / σ
vM

,0

a/r0

Em/Ea=0.5Em/Ea=0.333

Em/Ea=1.5

Em/Ea=3

Em/Ea=1

νm=0.35, νa=0.3

 
Figure 4. Influence of the interphase elastic properties on the maximum von Mises stress around 
nanoparticles. σvM,0 is the maximum von Mises stress stress occurring in the absence of interphase 
(a/r0=1).  
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3. Conclusions 
A closed form solution for the stress fields around a rigid nanoparticle under uniaxial 
tensile load has been provided accounting for an interphase embedding the 
nanoparticle. For the case of polymers modified by nanoparticles, this has allowed to 
determine, in closed form, the stress concentration around the nanoinhomogeneity, 
such a parameter being strictly related to the fracture toughness and strength of 
nanocomposites. 
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