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The assessment of nanocomposite mechanical properties is a challenging task. Due to their hierarchical
structure, which spans from nano to macro length-scales, a different way of thinking from traditional
approaches is needed to account for the characteristic phenomena of each length-scale and bridge their
effects from the smaller scale to the macroscale.

In the present work, some important issues of nanocomposite modelling are discussed. Then, a classi-
fication of the available modelling strategies is proposed, according to the scale from which the problem
is addressed. This comprehensive analysis is thought as a necessary tool for the development of new
effective approaches.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Thanks to their hierarchical structure encompassing different
time and length scales, nanocomposites are endowed with proper-
ties that are not just a synergistic combination of those pertinent to
bulk constituents, rather, a set of new ones coming from the
exploitation of matter at its molecular state.

Together with their outstanding properties, one of the most
interesting features concerned with the addition of nanofillers is
that they offer exceptional improvements at much lower concen-
trations than traditional (micro-sized) fillers assisting in the
achievement of high-level performances across various engineer-
ing applications. This is a considerable advantage since lower filler
contents translate into lighter composites, which is a desirable fea-
ture in many applications [1].

The extraordinary physical and chemical properties of nano-
composites can be related to the so called ‘‘nano-effect’’, a conse-
quence of the hierarchical structure of this kind of materials. As a
matter of facts, a uniform dispersion of nanoreinforcements pro-
duces an enormous interfacial area per unit volume (SSA) no mat-
ter the filler geometry [1–4]. Moreover, as the reinforcement
dimensions are of the same length scale as the radius of gyration
of polymeric chains, molecular interactions with the matrix cause
the formation of an interphase ‘‘layer’’. Its properties can be very
different from those of the constituents as reported in Refs. [5–
10] among the others. Given the huge amount of interacting sur-
face, the interfacial area is very large [2–5] so that the whole ma-
ll rights reserved.
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trix, or a large part of it, may be essentially considered as
interphase material displaying peculiar characteristics.

Focusing on the structural properties of nanocomposites, the lit-
erature reports a large amount of data on improvements of stiff-
ness, strength and toughness [1–5,11–20]. The improvement of
polymer toughness, in particular, not only broadens the polymer
field of structural applications but also makes the use of nanocom-
posite systems as matrices for fibre reinforced composites a smart
solution. As a matter of facts, while they already are a class of
materials of industrial appeal, nanomodified polymers can be the
basis for the development of ternary namomodified laminates
(resin + nanofiller + fibres) through which all the benefits tied to
the presence of a ‘‘many scale’’ reinforcement can be synergisti-
cally exploited [21–27] (Fig. 1).

A successful engineering application of nanocomposites re-
quires models capable of accounting for their inherent hierarchical
structure which encompasses the nano and the macro length-
scales. An effective modelling should take into account the charac-
teristic phenomena of each length-scale and bridge their effects
from the smaller scale to the macroscale. Accordingly, a different
way of thinking with respect to the traditional approaches is
needed. In micromechanics, indeed, one is used to address to prob-
lems concerning with two different characteristic lengths at most
(microscale and macroscale) both reasonably described by means
of continuum mechanics. Regarding nanocomposites, the presence
of three main length-scales (nano-, micro- and macroscale) all of
which characterized by peculiar mechanisms, urges a more flexible
way to address the problem. Indeed, while modelling molecular
interactions between the nanofiller and the matrix would require
a discrete approach, the introduction of such an atomistic model
up to macro length-scales is limited by the impracticability of
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accounting for more than some hundred millions of atoms. To give
an idea of the size of the problem, it is useful to remind here that a
nanoclay cluster with a diameter of 0.5 lm and 100 layers has
about 85 million atoms [28]. This fact gives rise to the need of a
multiscale modelling, each dominant mechanism being studied
by means of the best suited model with reference to the given
length and time scales. The more a model is able to account for
these features, the more it moves from a microscale towards a
nanoscale perspective.

Most of the several modelling strategies published in the recent
literature are focused on the assessment of nanocomposite elastic
properties; however, a comprehensive analysis aimed to identify
their main features is still missing.

This represents indeed a necessary condition for the develop-
ment of new effective approaches.

It is in this perspective that this work is intended with a twofold
aim:

– introducing and discussing the main issues of nanocomposite
modelling.

– proposing a classification of the available modelling strategies
as a function of the scale used to address the problem.

To this end, the main features of each approach are briefly ana-
lysed and significant examples available in the literature are pre-
sented as well.
2. Some important issues in nanocomposite modelling

The reduction of the filler size is the key issue of the extraordi-
nary properties of nanocomposites. In this section the most impor-
tant features related to the enormously increased specific surface
area (SSA) to be accounted for modelling are briefly discussed.

2.1. Agglomeration

Experimental evidence clearly shows that one of the major lim-
its for the full exploitation of nanocomposite performances, either
structural or functional, is the nanofiller agglomeration [3,4,21]. A
proper distribution and dispersion is essential to get high SSA,
which would be compromised by the emergence of clusters. A
large particle density reduces the load transfer from the matrix
to the nanofillers by strain shielding [29] and affects the overall
elastic properties as well as the efficacy of some energy absorbing
mechanisms. Notwithstanding this, agglomerates can still have a
stiffening effect as recently shown by Dorigato et al. [30].

Moreover, in the authors’ opinion, agglomeration may promote
mechanisms like crack pinning and crack deflection which would
not take place otherwise due to the size of the nanoreinforcement
with respect to the size of the crack front [31,32]. This may posi-
tively affect the cyclic resistance to crack propagation [15].

2.2. Morphology

The properties of polymer nanocomposites are highly related to
their overall morphology. Focusing on polymer layered silicate
(PLS) nanocomposites, for instance, three different morphologies
are thermodynamically achievable [16] depending on the interplay
between the polymer matrix and layered silicates (organomodified
or not) and also on the volume fraction of the nanofiller and the
processing conditions. There are separated, intercalated and exfoli-
ated or delaminated nanocomposites.

In the authors’ opinion, being macroscopic properties largely
influenced by the overall morphology, its modelling is basic and
the research scope should be at least twofold. On the one hand,
there is an evident need for understanding the effects of various
factors such as the size and shape of the nanofiller, its clustering
and the polymer architecture (e.g. homopolymer vs. copolymer)
on morphology. On the other hand, once morphology is fully deter-
mined, capturing its effects on macroscopic properties by means of
effective modeling is likewise important. Moreover, it is worth not-
ing that also the nanofiller has its own nanostructure-related mor-
phology. For example single wall carbon nanotubes (SWCNTs) are
characterized by different nanotube lengths, diameter and chirality
as well as the tube-end configuration (end-caps) and variability is
even more pronounced for multiwall carbon nanotubes (MWCNTs)
(since they can be considered as a number of nested SWCNTs [2]).
The major additional structural parameters include nanotube outer
and inner diameter, the number of nested SWCNTs (wall thick-
ness), and the presence of growth-induced configurations, such
as bamboo structures [2].
2.3. Matrix/nanofiller interface

The interfacial region surrounding the nanofiller is a zone of al-
tered chemistry, chain mobility, degree of cure and cristallinity. Its
properties are not just a synergistic combination of whose of each
bulk constituent, rather, a set of new ones due to the inherent inter
and supra-molecular interactions which can take place at the nano
length scale [5–10]. Accordingly, in the authors’ opinion, the emer-
gence of large regions of non-bulk polymer, even at low nanofiller
volume fractions, could be soundly correlated to the very high per-
formance improvements reported for nanocomposites. For in-
stance, the presence of a zone of chemical alteration can lower
the energy barrier for some toughening mechanisms. A reduction
of the degree of cross-linking in the interfacial region, indeed,
could promote some local ductile behaviour even in a well known
brittle material like epoxy, providing an additional energy absorb-
ing mechanism in the form of matrix plastic deformation [33]. In
this scenario, the analytical description of the interface and the
assessment of the overall properties accounting for the interphase
region is of utmost importance.

To capture the influence of the interphase on the overall behav-
iour of nanocomposites an insightful study at the molecular level
must be carried out. However, pursuing this task by means of
experimental investigations at the nano-scale is not straightfor-
ward, thus urging another way to address the problem. Supported
by the acknowledged efficacy in predicting the interfacial charac-
teristics and capturing the effects of intermolecular and supramo-
lecular interactions [8,9,34–42], the authors believe a molecular
analysis could be a suitable candidate, on condition that it is sup-
ported by an effective scaling up from nano to macro length scales.
3. A classification of the different modelling strategies available
in the literature

3.1. Preliminary remarks

Great efforts have been devoted in the recent literature to de-
velop appropriate models for the assessment of the mechanical
properties of nanocomposites, with special focus on elastic proper-
ties. The same cannot be said regarding the modelling of toughness
and dissipative damage mechanisms, despite of their importance
in the view of developing ternary namomodified laminates. A rea-
son is that toughness is inherently more complicated to assess.
While for what concerns elastic property prediction, a model can
be directly validated by means of macroscopic experimental data,
when dealing with toughening mechanisms the processes at the
nanoscale not only are difficult to be identified but they also re-
quire the observation and the validation at the same length-scale.



Ternary nanomodified
laminate 

Laminate thoughness 
improvement 

Matrix thoughness 
improvement 

Nanofiller 

Resin 

Nanomodified
resin 

Micrometric Fibres 

Fig. 1. Toughness improvement of ternary laminates through matrix
nanomodification.
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Moreover, the dominant mechanisms may change at different
nanofiller contents and are influenced by several parameters such
as the type of nanoparticle, the dispersion level, the matrix/nanore-
inforcement interface, the nanofiller morphology and the loading
conditions (quasi-static or cyclic), just to mention a few.

The aim of this section is to carry out a comprehensive analysis
of the currently available modelling strategies, which is still miss-
ing in the literature. The same basic ideas can then be translated in
the assessment of toughness and, consequently, of dissipated
energy.

Within this aim, it is first basic to acknowledge that in the most
general case three main stages should be addressed in nanocom-
posite modelling. Each stage might be tackled with the aid of a
dedicated model, with the aim to range from the nanoscale to
the macroscale:

– Molecular models. Starting from the bottom, the chemical–phys-
ical interactions arising at the nanoscale can be accounted for
by means of discrete methodologies [8,9,43], that allow to pre-
dict the time evolution of a system of interacting particles (e.g.
atoms, molecules, granules, etc.) and to estimate its physical
properties. The most common of these methodologies is Molec-
ular Dynamics (MD) (see, among the others [8,9]).

– Nanostructural models. Proceeding from the bottom to the top,
there is the need to assess mechanical interactions, which
depend on the morphology. This can be achieved by specific
nanostructural models for each kind of nanofiller, usually devel-
oped within a continuum mechanics-based frame, in order to
effectively describe the stress transfer with the matrix.

– Micromechanical models. Going further to the top, it is necessary
to scale up the nanoscale-related properties to the macroscale
or the mesoscale. This can be tackled by means of classical
micromechanical relationships, satisfactorily used for conven-
tional composites with micro-sized reinforcements. This last
scale-up often needs to exploit the concept of RVE by a finite
element model, with the number of DOF much smaller than
those required by MD.

Once having identified the main stages and the related models,
the large number of published works aimed at assessing nanocom-
posite properties can be gathered according to how many and
which of the mentioned models are used within the strategy. This
inherently define the scale from which the problem is addressed
(micro, nano and molecular) and, consequently, the effectiveness
in the description of the nanoscale.

Then, we propose here a classification of the possible multiscale
modelling strategies into three main groups: ‘‘Micromechanical
modelling strategies’’, ‘‘Nanostructural modelling strategies’’ and
‘‘Molecular modelling strategies’’. In brief:

– Micromechanical modelling strategies represent the simplest way
to address the property prediction although often it is not the
most effective. They make use of micromechanical models only.
Consequently, the matrix and the nanofiller are described by
means of Cauchy’s continuum mechanics without accounting
for interfacial interactions and nanostructure.

– A more insightful investigation is possible through Nanostruc-
tural modelling strategies. They make use of both micromechan-
ical models and nanostructural models, thus accounting for the
effects of the inherent nanostructure on the overall macroscopic
properties but not of the chemical–physical interactions.

– Finally, Molecular modelling strategies, make a combined use of
all the above mentioned models. The scope of the analysis is
taken to the actual nanoscale level to account for intermolecular
and supramolecular interactions by means of discrete method-
ologies. Accordingly, the scale-up from nano to macro length
scales is not straightforward and requires an effective multi-
scale approach combining nanostructural and micromechanical
models.

The concept of assembling basic models to build a multiscale
modelling strategy is defined here as ‘‘Three Stage Strategy’’ (TSS).

A schematic representation of this concept is shown in Fig. 2,
while the main characteristics of each strategy are listed in Table 1,
together with the relevant advantages and disadvantages. Each
strategy is then briefly discussed and representative examples
available in the literature are provided as well in next sections.
We apologize in advance to all authors who have presented contri-
butions in this field which have not been accounted for in the pres-
ent paper for reasons of space.

To conclude this section, it is also important to remind that
multiscale strategies can be hierarchical or concurrent. In the for-
mer case each model is addressed separately, inputs being pro-
vided by the solution of the previous model (at the smaller
scale). Differently, in the latter case, all the models are solved
simultaneously by using inputs from all scales.

However, being easier to be implemented and more efficient
from the computational point of view, almost all the available
modelling strategies in the literature are hierarchical. For the same
reason there are only few examples of concurrent approaches
[44,45].
3.2. The micromechanical modelling strategy

The micromechanical modelling strategy extends Cauchy’s con-
tinuum concept to the polymeric chain length-scale. It neglects the
nanoscale structure as well as the nanofiller–matrix molecular
interactions, and thus fails in capturing the ‘‘nano-effect’’ since it
cannot account for the inherent hierarchical structure of the
material.

In general, this kind of modelling strategy does not produce reli-
able predictions of elastic properties, disregarding also the en-
hanced tendency of the nanofiller to agglomerate [46]. Regarding
toughness assessments, micromechanical strategies proved to be
incapable of predicting the reported high increments in dissipated
energy at low nanofiller volume fractions as documented in
[33,47].

In spite of these limitations, micromechanical models, accord-
ing to the formulation used for conventional composites [48–50],
have been applied in the description of some mechanisms like
crack pinning or crack deflection in nanocomposites [33,47].
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Table 1
Summary of the main advantages and disadvantages related to the different modeling
strategies.
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For example, while investigating the mechanical properties of
alumina nanoparticles reinforced epoxies, Wetzel et al. [33] re-
ported TEM images of the fracture surfaces revealing the emer-
gence of ‘‘tail-like’’ features. Based on this experimental evidence,
they suggested to use the micromechanical model formulated for
the crack pinning mechanism [48–50] to predict the strain energy
release rate of the studied nanomodified system, and compared
theoretical predictions with experimental results.

An example of application of this modelling strategy is shown in
Fig. 3; data are taken from [33] and refer to TiO2 (diameter: 200–
500 nm) and Al2O3 (primary particles size: 13 nm) nanoparticle
reinforced epoxy. Note that in [33] fracture toughness improve-
ments were plotted as a function of nanoparticles diameter to
interparticles distance ratio; in Fig. 3, differently, data are plotted
as a function of the nanofiller content, as estimated through the
following expression:

Vf ¼
p
6
� 1

ð1þ c=r0Þ3
ð1Þ

where Vf is the nanofiller volume content, r0 is the nanoparticle ra-
dius and 2c is the interparticle distance. Eq. (1) has been obtained
assuming a cubic array of nanoparticles.
Fig. 3 clearly shows the limits of this strategy, the predicted val-
ues exhibiting a far more pronounced energy absorption with re-
spects to those detected experimentally. Indeed, the applied
micromechanical model [48–50] does account neither for the size
dependency nor for the effects of the region with the altered-
chemistry interphase.
3.3. The nanostructural modelling strategy

The nanostructural modelling strategy represent an attempt of
considering the morphology of the nanofiller at the nanoscale
while maintaining the hypothesis of continuity.

They start from a specific model of the nanofiller defined ‘‘nano-
structural’’, which allows one to account for its structure at the
nanoscale level and the way it mechanically interacts with the ma-
trix. The results of the previous model are implemented in a micro-
mechanical model (e.g. the Mori–Tanaka’s scheme, the Halpin–Tsai
equation etc.) often by taking advantage of the concept of an
‘‘effective filler’’ (which allows to account for the actual nanostruc-
ture) [51,52]. Alternatively, the scale up can be done by means of
full numerical models (e.g. FEA) of a representative volume ele-
ment (RVE) [53].

An inherent advantage of nanostructural modelling strategies,
when compared to micromechanical ones, is that they offer a more
insightful analysis of the nanofiller–matrix mechanical interac-
tions without compromising simplicity. As far as elastic properties
are concerned, this usually results in more reliable predictions. Of
course, since they do not include a molecular model, they cannot
account, by nature, for chemical–physical interactions. It is further
worth noting that most of the modelling strategies available in the
literature can be classified as Nanostructural. For the sake of brev-
ity, in the following we will then discuss only two representative
examples [51,52] (for further examples see [53–55]).
3.3.1. Thostenson and Chou’s modelling strategy for the elastic
property prediction of MWCNT nanocomposites

A significant example of a Nanostructural modelling strategy is
that due to Thostenson and Chou [51] for epoxy matrix reinforced
by aligned MWCNTs.

The main hypotheses of the analysis are a perfect nanotube/ma-
trix adhesion and that only the outer wall of the MWCNT can carry
load by neglecting the contribution of the inner layers. In addition,
a double Lorentzian distribution of outer diameters is assumed.

The actual filler nanostructure is accounted for by introducing a
solid effective fiber (see Fig. 4). Through an isostrain condition, the
Young modulus of the effective fiber is linked to the outer layer
thickness, the outer diameter and the nanotube Young’s modulus.
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Then, assuming all nanotubes to be perfectly aligned, the Hal-
pin–Tsai micromechanical model is used to determine the longitu-
dinal Young modulus, E11 [51].

In this way, E11 depends not only on the reinforcement aspect
ratio but also on the outer nanotube wall thickness, being then size
dependent.
3.3.2. Luo and Daniel’s modelling strategy for the elastic property
prediction of clay nanocomposites

The nanostructural modelling strategy proposed by Luo and
Daniel for PLS nanocomposites [52] aims at accounting for the ef-
fect of the nanofiller morphology (i.e. its state of intercalation) by
means of a three phase Mori–Tanaka model (matrix, exfoliated
clays and cluster of intercalated clays).

The properties of intercalated clay clusters are computed by
treating them as a system of parallel nanolayers (Fig. 5) assuming
an ellipsoidal geometry and the isotropy of each constituent. It is
further assumed that the interlayer (intragallery) material has
the same Poisson ratio of the bulk matrix, but a Young’s modulus
am times greater, am being an intragallery stiffness enhancement
factor.

Assuming the in-plane strains (1, 2 directions) and out-of-plane
stresses (3 direction) to be the same in both the clay phase and the
interlayer matrix, equilibrium and compatibility conditions are
used to determine the stiffness tensor of the stack.
Cla
thic
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Fig. 5. A representative element of an intercalated cluster of cl
The stiffness tensor is found to depend, besides on the clay and
the matrix elastic properties, on nanostructural parameters such as
the layer thickness to layer spacing ratio and the intragallery stiff-
ness enhancement factor am [52].

Finally a three phase Mori–Tanaka’s model is used. In more
details:

– The exfoliated region is considered as a two-phase system com-
posed of matrix and exfoliated layers, and the stiffener tensor of
this simplified system is first determined;

– The exfoliated region is then considered as the effective matrix
phase and the intercalated region as the inclusion phase;

In this way, not only the effects of the nanostructure of the clus-
ters but also those of the overall morphology are considered.

An example of application is shown in Fig. 6, where the overall
elastic modulus is plotted vs. the nanofiller volume content for dif-
ferent exfoliation ratio, Ve. It is evident that the use of Ve = 10%,
which is consistent with measured values [52], provides a reason-
ably good agreement with experimental results for clay epoxy
resin.

3.4. The molecular modelling strategy

The molecular modelling strategy makes a combined use of the
molecular, nanostructural and micromechanical models described
in Section 3.1. At the bottom level it abandons the continuity
hypothesis in favour of discrete theories; Molecular Dynamics
(MD) is an example of these theories.

Molecular modelling strategies are penalized by the elevated
computational power required to encompass the different charac-
teristic length-scales, and differ one from the others by the way in
which they deal with the property bridging [56–69]. The more ele-
vated computational cost is justified by the need of seizing chem-
ical–physical interactions at the nanoscale, which have a basic
influence on functional as well as mechanical properties.

3.4.1. Odegard et al. equivalent continuum model for elastic property
prediction of MWCNT nanocomposites

An example of Molecular modelling strategy is the equivalent
continuum model proposed by Odegard et al. [56] for elastic prop-
erty assessment of MWCNT nanocomposites.

The approach is based on the construction of a unit cell and an
equivalent continuum cell, the former one being constituted by a
nanotube only and being thought of as a RVE. The initial equilib-
rium conditions are determined by means of MD analyses.

The continuum cell elastic properties are determined by an En-
ergy Equivalence Rule, which bridges the molecular model to the
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equivalent continuum. To do so, an equivalent truss model is intro-
duced, in which every intermolecular bond is modelled by a truss
pinned in the centres of mass of each particle between the two
cells under the same boundary conditions.

Finally, the scale-up to the macroscale is pursued by means of
the Mori–Tanaka method, modeling nanotubes as ellipsoidal inho-
mogeneities with different orientation distributions.

A similar approach has been presented independently by Li and
Chou [60] for nanotube elastic property assessment. In this case,
each bond is simulated as a beam instead of a truss in order to ac-
count also for its flexural rigidity.

3.4.2. Scocchi et al. hierarchical modelling for nanocomposites elastic
properties

Other significant examples of Molecular modelling strategy for
the prediction of the overall properties of nanocomposites are due
to Scocchi et al. [61] and Fermeglia and Pricl [62,63].

The authors propose to bridge the gap between mesoscale and
atomistic scale by means of a Dissipative Particle Dynamics (DPD)
analysis. In the DPD, differently from classical MD, atoms or mole-
cules are not represented directly by a particle but they are coarse-
grained into beads (Fig. 7) moving according to Newton’s equation
of motion and interacting dissipatively through simplified force
laws.

The forces acting on each bead are made of three distinct con-
tributions: a conservative, a dissipative and a random force. Each
of them is strictly dependent on the interaction energy values to
be calculated by means of MD. The required computational power
to this end is reduced, as the dimensions of the cell are much lower
than those of the mesoscale cell. Accordingly, being the DOF of the
system also highly reduced, the simulation can be performed with-
Molecular 
Dynamics 

Dissipati
Particle 
Dynamic

Fig. 7. Schematic of the coarse-graining of a surfactant molecules into beads and the fol
simulation, according to the modelling strategy proposed by Fermeglia and Pricl [63].
in a mesoscale cell whose dimensions are longer than those com-
monly set in MD.

The morphology and density fields computed by means of the
DPD simulations are then implemented in the FE model of the
mesoscale cell. In this way the mechanical properties of mesoscale
structures (nanoclay clusters) are determined applying six infini-
tesimally small deformations and minimizing the resulting total
strain energy.

Once the stack properties are calculated, the overall mechanical
properties of nanocomposites are calculated by a micro-FE simula-
tion within a RVE. The mechanical properties of the mesostructures
of the RVE come from the lower length scale simulations while the
overall morphology can be estimated from TEM [61–63].

In this way, the computation of the elastic constants can be per-
formed by the energy minimization described above thus complet-
ing the scaling up from the nano to the macroscale.

An example of application of these modelling strategies to-
gether with a comparison between experimental and predicted re-
sults is shown in Table 2. Data are taken from different references
[56,61–63]. It is evident that the adoption of a Molecular Modelling
Strategy results in a satisfactory agreement between experimental
results and predictions. It is also evident that such strategies are
capable to account for the effects of different functionalisation on
the overall elastic properties of the nanocomposite.
4. Discussion

In this work the main issues concerning the assessment of
nanocomposite mechanical properties have been discussed.

One of the reasons of the extraordinary properties of nanocom-
posites is acknowledged to be the enormous increase in the spe-
cific surface area (SSA), together with the emergence of
molecular interactions at the nanoscale.

However, the resulting multiscale structure makes the problem
of predicting nanocomposite properties complicated being it gov-
erned by several assorted variables (such as morphology, surface
functionalization, nanofiller content, etc.) which do affect different
length scales.

The improvement of matrix toughness and all the other weak
matrix-controlled properties of composite laminates is the ulti-
mate task of nanomodification. The full exploitation of these ben-
efits requires, however, the development of reliable predictive
models. Despite this, while a large bulk of modelling strategies
has been proposed in the previous literature to assess elastic prop-
erties of nanocomposites, relatively little attention has been paid
to strength or toughness assessment.

The analysis carried out in this work highlights the main fea-
tures of the modelling strategies available up to now as well as
ve 

s 

Micro-FEM 

lowing scale up of the density fields computed by means of DPD to the micro-FEM



Table 2
Elastic properties of nanocomposites. Comparison between experimental results and
predictions based on different Molecular Strategies.

System Vf

(%)
Property Predicted

(GPa)
Experimental
(GPa)

D
(%)

Ref.

Polyimide/SWNT
acid treated

0.2 E 1.32 1.19 11 [56]

Nylon 6/MMT
with M3C18

1.9 E 4.19 4.32 3 [61]

Nylon 6/MMT
with M2(C18)2

1.9 E 4.41 4.60 4 [61]

ABS-MMT 2 G 3.15 2.75 15 [63]
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their main advantages and disadvantages and can be useful also for
the formulation of toughness assessment strategies.

A classification is proposed which gathers the state-of-art strat-
egies into three main groups according to the scale from which the
problem is addressed: Micromechanical, Nanostructural and
Molecular.

In the authors’ opinion the Molecular modelling strategy is the
most effective way to tackle the issue of nanocomposite property
assessments. Despite of its high computational costs, it represents
the only way to account for intermolecular and supramolecular
interactions at the nanoscale. By doing so it allows assessing many
properties related to chemical–physical interactions, such as the
interphase elastic properties, the interfacial energy or the density
fields surrounding a nanoparticle, which might have important ef-
fects on the overall properties.

The properties coming from the ‘‘bottom’’, which have been
computed by a numerical simulation at the nanoscale, can be em-
ployed in user-friendly nanostructural and micromechanical mod-
els developed within a robust analytical frame.

This is a considerable advantage in the prospect of the engineer-
ing of nanostructured materials as relatively simple descriptive
models can be obtained.

An example of this concept can be found in Refs. [8,9] where the
elastic properties of the interphase surrounding the nanoparticles
are first computed by a MD simulation and then employed within
a multiphase Mori–Tanaka scheme. A full numerical approach is
also possible as well, as documented in [61–63].

In principle, there are substantial differences and difficulties in
modelling the elastic constants (small deformations and undam-
aged material) with respect to the fracture toughness. However a
similar strategy can be used to assess toughness improvements
and the dissipated energy by dealing with the several parameters
affecting the fracture process. In the authors’ opinion, this can be
achieved by means of a ‘‘multi-mechanism’’ modelling strategy,
in which each contribution is weighted according to the specific
case (accounting for the nanofiller typology, the morphology and
the functionalization).

As a first step in this direction the present authors have devel-
oped some models to assess nanoparticle debonding stress which
accounts for surface stresses and the emergence of an interphase
surrounding the nanoparticle with a relevant change in the local
elastic properties [64,65]. Indeed, nanoparticle debonding might
take an important role not only as mechanism itself, but also as
trigger for phenomena like plastic void growth or matrix shear
yielding [66,67].
5. Conclusions

In the present work the main issues of nanocomposite model-
ling have been discussed and a description of some modelling
strategies available in the literature has been provided. Most of
these are micromechanical-based, and should then be updated to
include the typical features of the nanoscale.

It has been acknowledged that in the most general case three
main stages should be addressed in nanocomposite modelling,
and each stage might be tackled with the aid of a dedicated model.
Accordingly, the different strategies available in the literature,
aimed at predicting the mechanical properties of nanocomposites,
have been classified into three groups: Micromechanical, Nano-
structural and Molecular, depending on how many and which of
the basic models have been used within the strategy. The concept
of assembling basic models to build a multiscale modelling strat-
egy has been defined here as ‘‘Three Stage Strategy’’ (TSS).

The most important features of each strategy have been dis-
cussed, together with benefits and drawbacks. Significant exam-
ples, taken from the literature, have been provided as well.
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