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One of the most appealing features concerned with nanomodification of polymeric resins for structural
applications is the perspective of obtaining high toughness even at low nanofiller volume fractions. Such
performances are related to the energy dissipated through the damage mechanisms taking place at the
nanoscale. Among these, nanoparticle debonding could take an important role either as a mechanism
itself or as a trigger for phenomena like plastic void growth or matrix shear yielding. In the present work,
a model for the hydrostatic tension related to debonding is presented. The model accounts for some
important issues inherently related to the nanoscale with particular reference to the emergence of an
interphase surrounding the nanoparticle. Results can be useful in view of a multi-scale modelling of
the problem.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

In the recent literature great attention has been paid to nano-
scale reinforcements to significantly increase polymer stiffness,
strength and toughness with low reinforcement concentrations
(see, among the others, [1–6]). The improvement of polymer
toughness broadens the nanocomposite field of standalone appli-
cations and makes the use of nanocomposite systems as matrices
for fibre reinforced composites a smart solution. As a matter of
facts, nanomodified polymers can be the basis for the further
development of a new class of composites through which all the
benefits coming from nanosized materials together with all those
concerned with the addition of micrometric size fibres can be syn-
ergistically exploited.

The understanding of the relation between the nanostructure
and the overall mechanical behaviour of nanocomposites plays an
important role in the development of such materials. This need
has given rise in the literature to a large number of modelling strat-
egies. Thostenson and Chou [7] proposed a model for an epoxy ma-
trix reinforced by aligned multi-walled carbon nanotubes
(MWCNTs), where the actual filler nanostructure is accounted for
by introducing a solid effective fibre through an iso-strain condition.

Independently, Luo and Daniel [8] studied the prediction of
elastic properties of polymer layered silicate (PLS) nanocomposites.
They accounted for the nanoclay morphology by a three-phase Mori-
Tanaka model (matrix, exfoliated clays and cluster of intercalated
ll rights reserved.

: +39 0444 998888.
uaresimin).
clays) and for the actual nanofiller orientation and grade of
exfoliation.

Recently, molecular modelling strategies based on discrete
computational modelling techniques have also been used to inves-
tigate nanocomposite systems [9–13].

Different from the above mentioned works, which are focused
on the assessment of elastic properties and disregard strengthen-
ing and toughening mechanisms, a study on the effects of nanopar-
ticles on fracture properties of epoxy resins has been carried out by
Wetzel et al. [14]. Together with a comprehensive experimental
analysis, the authors studied the effects of various fracture mech-
anisms, such as crack deflection and crack pinning, by means of
some micromechanical models. A similar approach has been later
used by Johnsen et al. [15] and Zhao et al. [16].

A study on the energy dissipation due to the interfacial
debonding of nanoparticles has been done by Chen et al. [17].
By means of an energy analysis of the process, these authors
derived a simple size-dependent formulation for the debonding
stress later used to compute the energy dissipation due to this
mechanism. The size distribution of particles was thought of as
obeying a logarithmic normal distribution and the Weibull distri-
bution function was used to describe the probability of debonding
at the interface.

More recently Lauke [18] analysed the energy dissipation phe-
nomena by considering, besides particle debonding, voiding and
subsequent yielding of the polymer. The conclusions drawn by
Lauke are different depending on the used debonding criterion
(critical stress or critical energy). The same author also provided
the theoretical basis for a test to determine the interfacial adhesion
strength between a coated particle and a polymer matrix material
[19].

http://dx.doi.org/10.1016/j.compscitech.2011.09.016
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Fig. 1. Description of the system under analysis: nanoparticle of radius r0

embedded in an interphase region or radius a. Bulk material of radius b subjected
to a hydrostatic stress S.
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Williams [20] analysed in detail the toughening of particle filled
polymers assuming that plastic void growth around debonded or
cavitated particles is the dominant mechanism for energy
dissipation.

All the works mentioned above are founded on the definition of
a criterion for discriminating debonding. This particular problem
was initially investigated by Nicholson [21], who considered a rigid
spherical inclusion embedded in and completely adhered to a
much larger sphere of matrix. Assuming that the adhesive bond
was weak and the matrix sphere is subjected to a uniform fixed ra-
dial stress on its outer surface, Nicholson found a criterion for
detachment. The case of a rigid spherical inclusion under a tensile
stress applied to the elastomeric matrix was analysed by Gent [22].
Here the inclusion is assumed to have an initially-debonded patch
on its surface and the conditions for growth of the patch are de-
rived from fracture energy considerations.

In the previous works, the existence of only two different
phases (i.e the particle and the matrix) is assumed. Although this
sounds reasonable at the microscale, it does not hold valid for
nanosized reinforcements. In this case the molecular structure of
the polymer matrix is significantly altered at the particle/matrix
interface and this perturbed region is comparable in size with that
of the nanoparticle [10,13]. In the present paper particular atten-
tion is paid to the interphase zone surrounding the nanoparticle,
which, due to inter and supra-molecular interactions, might be
characterised by chemical and physical properties different from
those of the constituents. The aim of the present study is to deter-
mine a closed form expression for the critical debonding stress
accounting for the existence of an interphase zone of different
properties between the nanoparticle and the matrix. In more
details:

– the problem is formulated and solved by considering a nanopar-
ticle of radius r0 surrounded by a shell-shaped interphase of
radius a;

– the expression for the critical debonding stress is determined
within the frame of the Finite Fracture Mechanics (FFM)
approach. Stress and displacement fields at incipient debonding
and after debonding has taken place are determined by using
the Cauchy Continuum Theory;

– the solution makes explicit the role played by the properties
and the size of the interphase zone.

2. Description of the system under analysis

Different from traditional microsized composites, in nanoscale
materials and structures, the surface effects become significant
[23–25], due to the high surface/volume ratio. Then, as stated by
Ajayan et al. [25], when dealing with polymer nanocomposites it
is extremely important to analytically describe the presence of
an interphase and to be able to correctly estimate properties
accounting for the interfacial region [25].

Unfortunately, the data available so far in the literature about
the interphase zone are not enough to precisely formulate the
law of variation of its properties across the thickness, as well as
its size. Those parameters varies from case to case [26]. For exam-
ple, Odegard et al. [10], by using molecular dynamics (MD) simula-
tions, studied a system made of silica nanoparticles and a
polyimide matrix reporting the existence of an interphase zone
whose size was comparable with that of nanoparticles and the
elastic properties lower than those of the matrix. Different results
have been obtained by Yu et al. [13]; these authors, studying sys-
tems made of epoxy resins, found an interphase zone stiffer than
the matrix.

For the sake of simplicity, in this work we assume that, even if
there might be a gradual transition of the interphase properties
across its thickness to the bulk ones, a through-the-thickness aver-
age is representative of the overall property distribution (according
to [10,13]). Consequently, the interphase is supposed to be homo-
geneous and isotropic. Thus the system under investigation, shown
in Fig. 1, is constituted by:

– a spherical nanoparticle of radius r0;
– a shell-shaped interphase of external radius a and uniform

properties;
– a matrix of radius b loaded by a hydrostatic stress S.

The properties required by the analysis can be computed by
means of numerical simulations carried out within the frame of
MD as done in [10,13]; such method provides, as outputs, the ra-
dial extension of the interphase as well as the elastic properties
averaged through the interphase thickness.

The interphase extension might also be measured through the
experimental approach proposed by Zammarano et al. [27] even
though it needs to be validated for nanofillers different from those
considered by the authors.

3. An energy approach to the problem

According to the Finite Fracture Mechanics (FFM) approach
[28], the debonding of a nanoparticle can be assessed by imposing
the following energy and stress conditions:

� dU
dA

P c and r P rc ð1a-bÞ

where rc is the normal interfacial strength, dU is the change in po-
tential energy, dA is the newly created debonded surface and c is the
interfacial fracture energy.

With the aim to determine the critical debonding stress from
Eq. (1a), it is possible to make use of the following equilibrium
equation, involving the energy states of the system during the deb-
onding process:

dW ¼ dK þ dUmþa þ dUp þ 4cpr2
0 ð2aÞ

where dW is the work done by external forces, dK is the variation in
the kinetic energy, dU is the variation in the elastic energy stored in
the matrix and interphase (dUm+a) and in the nanoparticle (dUp) and
r0 is the nanoparticle radius.

Since the initial state is static, dK is always positive and Eq. (2a)
can be also rewritten as:

dW 6 dUmþa þ dUp þ 4cpr2
0 ð2bÞ

The term dW in Eq. (2b) can be expressed as:

dW ¼ S� dumðbÞ � 4pb2 ð3Þ

where b� r0 represents the matrix radius, dum is the variation in
the matrix displacement field from the initial condition (incipient
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debonding) to the final condition (post debonding) and S is the re-
motely applied hydrostatic stress which is not supposed to change
during the debonding process (see Fig. 1).

At the same time, Clapeyron’s theorem [29] guarantees that:

dUp ¼ �1
2
rcr � dupðr0Þ � 4pr2

0

dUmþa ¼ �1
2
rcr � duaðr0Þ � 4pr2

0 þ S� dumðbÞ � 4pb2
ð4Þ

In Eq. (4) the terms dui represent the variation in the displacement
fields from the initial condition (incipient debonding) to the final
condition (post debonding).

It is then evident that the problem is translated into a stress
analysis of the system at two different states: incipient debonding
and post debonding. Moreover, Eq. (4) allows the energy condition
given by Eq. (1a) to be rewritten as a stress condition.

4. Stress analysis

Displacement and stress fields can be determined within the
frame of the Cauchy Continuum Theory regarding constituents as
isotropic materials, in agreement with some recent works about
nanocomposites [17,26,30].

The spherical symmetry of the problem (Figs. 1 and 2) guaran-
tees that only the radial displacement u is nonzero, being it also
independent of the angular coordinates h and a.

Substituting stresses in terms of displacements into equilibrium
equations and accounting for the spherical symmetry results in the
following Euler equation for u:

d2u

dr2 þ
2
r

du
dr
� 2u

r2 ¼ 0 ð5Þ

General solutions of Eq. (5) are:

um ¼ Amr þ Bm

r2 r 2 ða; b� in the matrix ð6Þ

ua ¼ Aar þ Ba

r2 r 2 ðr0; a� in the interphase ð7Þ

up ¼ Apr þ Bp

r2 r 2 ½0; r0� in the nanoparticle ð8Þ

Accordingly, the radial stress components turn out to be:

rrr;k ¼ 3KkAk � 4
BkGk

r3 with k ¼ m; a;p ð9Þ

where Kk = Ek/[3(1 � 2mk)] and Gk = Ek/[2(1 + mk)] are the bulk and
the shear moduli of the k-th sub-dominion respectively.

It is noteworthy that the explicit expression of displacement
and stress fields requires six constants to be determined. Since
Fig. 2. Spherical coordinates system and stress components used to address the
problem.
we are analysing two different states of the system, namely
‘‘incipient debonding’’ (‘‘id’’) and ‘‘post debonding’’ (‘‘pd’’), the
problem can be solved by determining twelve constants.
5. Stress and displacement fields at incipient debonding

At the condition of ‘‘incipient debonding’’ (‘‘id’’), displacement
singularities in the particle can be avoided if and only if BðidÞp ¼ 0.

Assuming that debonding occurs when the radial stress around
the particle reaches a critical value, rcr, boundary conditions for
the problem can be written in terms of equilibrium and compati-
bility conditions as follows:

rp
r

��
r¼r0
¼ rcr ra

r

��
r¼r0
¼ rcr ra

r

��
r¼a ¼ rm

r

��
r¼a rm

r

��
r¼b ¼ S ð10a-dÞ

upjr¼r0
¼ uajr¼r0

uajr¼a ¼ umjr¼a ð11a-bÞ
5.1. Displacement field within the nanoparticle

Substituting Bp = 0 into Eq. (8) and differentiating by r results in:

ep
r ¼

du
dr
¼ AðidÞp ð12Þ

Moreover the nanoparticle is subjected to a hydrostatic stress field:

rp
r ¼ rp

h ¼ rp
a ¼ rcr ð13Þ

Thus:

AðidÞp ¼ rcr

3KP
ð14Þ

Finally, substituting AðidÞp into Eq. (8):

up ¼ rcr

3KP
� r ð15Þ
5.2. Stress and displacement fields within the interphase

Coupling Eqs. (10b) and (11a) results in the following algebraic
system:

rcr ¼ 3KaAðidÞa � 4 BðidÞa Ga

r3

rcr
3Kp

r0 ¼ AðidÞa r0 þ BðidÞa
r2

0

8><
>: ð16Þ

which, solved in AðidÞa and BðidÞa , gives:

AðidÞa ¼ rcr
3Kp þ 4Ga

3Kpð3Ka þ 4GaÞ

BðidÞa ¼ rcr
Ka � Kp

Kpð3Ka þ 4GaÞ
r3

0

ð17Þ

Then, stress and displacement fields can be expressed as a function
of the normal stress acting on the nanoparticle, rcr:

ra
r ¼ rcr

Kað3Kp þ 4GaÞ � 4GaðKa � KpÞ r0
r

� �3

Kpð3Ka þ 4GaÞ

ua ¼ rcr

Kp
r

3Kp þ 4Ga

3ð3Ka þ 4GaÞ
þ Ka � Kp

ð3Ka þ 4GaÞ
r0

r

� �3
� � ð18Þ
5.3. Stress and displacement fields within the matrix

Coupling Eqs. (10c) and (11b) results in the following algebraic
system:
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3KaAðidÞa � 4 BðidÞa Ga

a3 ¼ 3KmAðidÞm � 4 BðidÞm Gm

a3

AðidÞa aþ BðidÞa
a2 ¼ AðidÞm aþ BðidÞm

a2

8<
: ð19Þ

which, omitting some algebraic manipulations, provides:

AðidÞm ¼ rcr

3Kp

ð3Ka þ 4GmÞð3Kp þ 4GaÞ þ 12ðKa � KpÞðGm � GaÞ r0
a

� �3

ð3Ka þ 4GaÞð3Km þ 4GmÞ

BðidÞm ¼ rcr

Kp

3Kp þ 4Ga

3Ka þ 4Ga

Km � Ka

3Km þ 4Gm
a3 þ rcr

Kp

3Km þ 4Ga

3Km þ 4Gm

Ka � Kp

3Ka þ 4Ga
r3

0

ð20Þ

The relation between the boundary stress S and the normal stress at
the interface rcr can be expressed as:

S ¼ Chrcr ð21Þ

where Ch is the reciprocal of the hydrostatic component of the Glo-
bal Stress Concentration Tensor of the problem (see Appendix A).

Substituting Eq. (21) into the condition rm
r

��
r¼b ¼ S results in:

Ch ¼
Km

Kp
f ð22Þ

where

f ¼ ð3Ka þ 4GmÞð3Kp þ 4GaÞ
ð3Ka þ 4GaÞð3Km þ 4GmÞ

þ 12

� ðKa � KpÞðGm � GaÞ
ð3Ka þ 4GaÞð3Km þ 4GmÞ

r0

a

� �3
þ 4

Gm

Km

3Km þ 4Ga

3Km þ 4Gm

� Kp � Ka

3Ka þ 4Ga

r0

b

� �3
þ 4

Gm

Km

3Kp þ 4Ga

3Km þ 4Gm

Ka � Km

3Km þ 4Gm

a
b

� �3
ð23Þ
6. Stress and displacement fields after debonding

After debonding (‘‘pd’’ state), the nanoparticle becomes un-
loaded and its displacement field is trivially zero. Then, only the
following four boundary conditions are needed to solve the
problem:

ra
r

��
r¼r0
¼ 0 ra

r

��
r¼a ¼ rm

r

��
r¼a rm

r

��
r¼b ¼ S uajr¼a ¼ umjr¼a ð24a-dÞ

Eqs. (24) lead to the following linear system:

3KaAðpdÞ
a � 4 BðpdÞ

a Ga

r3
0
¼ 0

3KaAðpdÞ
a � 4 BðpdÞ

a Ga

a3 ¼ 3KmAðpdÞ
m � 4 BðpdÞ

m Gm

a3

AðpdÞ
m aþ BðpdÞ

m
a2 ¼ AðpdÞ

a aþ BðpdÞ
a
a2

3KmAðpdÞ
m � 4 BðpdÞ

m Gm

b3 ¼ S

8>>>>>>>><
>>>>>>>>:

ð25Þ

which, after long but straightforward algebraic manipulations, fur-
ther accounting for b� r0 and Kp� Km, Ka, gives:

AðpdÞ
a ¼ rcrf

3Kp

Gað4Gm þ 3KmÞ
Gað4Gm þ 3KaÞ � 3ðr0=aÞ3KaðGa � GmÞ

BðpdÞ
a ¼ rcrf

4Kp

Kað4Gm þ 3KmÞ
Gað4Gm þ 3KaÞ � 3ðr0=aÞ3KaðGa � GmÞ

r3
0

ð26Þ

where f is given by Eq. (23) and Gm and Ga are the matrix and inter-
phase shear moduli, respectively.

Finally, the radial displacement field results:

ua ¼ rcrf
Kp

� ð4Gm þ 3KmÞ
Gað4Gm þ 3KaÞ � 3ðr0=aÞ3KaðGa � GmÞ

Gar
3
þ Ka

4
r3

0

r2

	 

ð27Þ
7. Analytical solution for the critical debonding stress

Once all stress constants have been determined, it is possible to
explicitly reconsider Eq. (2b) where now the only unknown vari-
able is the debonding stress, rcr, which can be determined in closed
form. The final solution, noting that Em = 2Gm(1 + mm), is:

rcr ffi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4c
r0

Em

1þ mm

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vð4þ nÞ � nðv� 1Þðr0=aÞ3

4þ nþ 4ðv� 1Þðr0=aÞ3

s
ð28Þ

where v = Ga/Gm and n = 3Ka/Gm are two normalised elastic param-
eters. It is worth noting that rcr depends not only on the matrix and
nanoparticle properties, but also on those of the interphase; more-
over the size effect is accounted for through the radius of the nano-
particle as well as through the nanoparticle radius to the interphase
radius ratio, r0/a.

Based on the general solution given by Eq. (28) it is also possible
to determine the limit values which might be representative of
special material configurations.

The debonding stress can be thought of as not influenced by the
interphase zone if one of the two following conditions is verified:

– the elastic properties of the interphase zone are not signifi-
cantly different from those of the matrix (v? 1);

– the interphase zone extension is negligible with respect to the
nanoparticle size (a/r0 ? 1).

Indeed it is evident that, as one of the above-mentioned condi-
tions is verified, Eq. (28) simplifies as follows:

rcr ffi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4c
r0

Em

ð1þ mmÞ

s
ð29Þ

Note that Eq. (29) completely disregards the presence of an inter-
phase zone and matches the solution already proposed by other
authors [17,20] for a system constituted by matrix and nanoparti-
cles only.

It is finally worth noting that when the interphase size is much
greater than the particle size, namely when r0/a ? 0, Eq. (28) sim-
plifies as follows:

rcr ffi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4c
r0

Em

ð1þ mmÞ

s ffiffiffi
v
p ffi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4c
r0

Ea

1þ ma

s
ð30Þ

Eq. (30) matches Eq. (29) when matrix properties are changed for
interphase properties and represents the asymptotic value to which
the complete solution tends as the ratio a/r0 becomes sufficiently
high. This asymptote strictly depends on v and is not influenced
by n.
8. Results and discussion

The aim of this section is to clarify the range of applicability and
to highlight, through examples, the most relevant features of the
solution proposed in the previous section.

It is first worth noting that, since no size limitations have been
formulated in the model, Eq. (28) can be applied both to nanosized
and microsized particles.

Moreover, the major novelty of the present work, with respect
to previous ones in the literature [17,20], lays on the fact that Eq.
(28) explicitly considers the effect of an interphase zone surround-
ing the nanoparticle, which might be characterised by physical
properties different from those of the matrix. It is then interesting
to quantify the effects of the interphase properties and size on the
critical value of the debonding stress. To this end, Figs. 3–5 show a
comparison between the results obtained on the basis of Eq. (28),
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Table 1
Elastic properties of the polyimide matrix/silica nanoparticle system used in Figs. 5
and 6. Properties are taken from Ref. [10] and were computed by means of molecular
dynamics simulations.

Polyimide matrix Em 4.20 (GPa)
Gm 1.50

Interphase Thickness t 1.2 (nm)
Phenoxybenzene Silica Ga 0.10 (GPa)

Ka 1.00
Hydroxylated Silica Ga 0.80 (GPa)

Ka 3.06
Untreated Silica Ga 1.30 (GPa)

Ka 3.89

r0 [nm]

0.200

0.300
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Fig. 6. Normalised debonding stress versus the nanoparticle size, r0, according to
Eq. (28). The interphase thickness, t, is assumed to be independent of the particle
size. Different types of functionalisation (data taken from Odegard et al. [10]). rcr,0

denotes the value for the debonding stress evaluated by disregarding the presence
of the interphase zone, Eq. (29).
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which considers different matrix and interphase properties and
different values of the interphase to nanoparticle radius-ratio,
and Eq. (29) [17,22].

In particular, Fig. 3 highlights that the effect of the interphase
on debonding stress strictly depends on the ratio between the
interphase and the matrix shear moduli, v. It is worth noting that,
when the shear modulus of the matrix is greater than that of the
interphase (v < 1), debonding stress decreases compared to
the Chen et al. solution [17] while, for stiffer interphases (v > 1),
the debonding stress increases. It is also evident that, either for
stiffer or softer interphases, the asymptotic value represented by
Eq. (30) is rapidly reached and there are no significant variations
of the debonding stress for a/r0 values greater than 2.

Fig. 4 highlights the effect of the parameter n on the solution. It
is evident that this parameter has only a slight influence: varying n
from 1 to 50 the maximum difference is within 30%. Moreover, it is
worth noting that its influence is limited to a/r0 ratii smaller than
3, while the asymptotic value depends only on parameter v.

Fig. 5 shows the result of the application of the model to data
taken from the literature [10]. In this case, the non-dimensional
stress ratio is plotted versus the normalised radial extension of
the interphase considering the elastic properties computed by
Odegard and co-workers in Ref. [10]. All the necessary details are
listed in Table 1.

It has to be noted that the use of different surface treatments re-
sults in different elastic properties for the interphase (see Table 1).
Accordingly, the model gives a different debonding stress not only
depending on the matrix mechanical properties but also on the
surfactants used. This result is shown in Fig. 5, where it is evident
that the debonding stress is affected by the surface treatment
depending also on the radial extension ratio a/r0. In particular,
for a/r0 = 2, which can be considered a representative value as sug-
gested in [10], Eq. (28) gives a value 20% lower (hydroxylated sil-
ica) and 60% lower (phenoxybenzene silica) than that obtained
from Chen’s model, which is interphase independent [17].

It is finally interesting to see which is the size range of particles
where the present model differs from previous analyses already
carried out in the literature [17]. Fig. 6 shows the normalised crit-
ical debonding stress, estimated through Eq. (28), of three silica
nanoparticle/polyimide composites as a function of the particle
size, r0. The elastic properties are according to those computed
by Odegard and co-workers in Ref. [10] (see Table 1). A large range
of particle radii, from 1 nm to 1 lm, has been considered. However,
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it is evident that for radii greater than 100 nm, the result matches
that predicted by Chen’s model, Eq. (29), as one may guess in view
of the limited influence of the thin interphase. The different inter-
phase properties, resulting from different surface functionalizers,
have, instead, a significant effect on the debonding stress for nano-
particle radii below 50 nm. Obviously this result might change
from case to case, depending on the system under investigation
(matrix, nanoparticle and surfactants used).

9. Conclusions

In this work a closed form expression for the critical debonding
stress accounting for the existence of an interphase zone between
the nanoparticle and the matrix has been proposed. In more
details:

– the problem has been formulated and solved by considering a
nanoparticle of radius r0 surrounded by a spherical interphase
of radius a;

– the expression for the critical debonding stress has been deter-
mined within the frame of the Finite Fracture Mechanics. Stress
and displacement fields at incipient debonding and post deb-
onding has taken place has been determined within the Cauchy
Continuum Theory;

– since no size limitations have been formulated on the hypothe-
ses, the new solution can be applied both to nanosized and
microsized particles;

– the solution quantifies the role played by the properties and the
size of the interphase zone. It has been shown that as different
functionalizers lead to different elastic properties of the inter-
phase, the debonding stress is affected by the surface treatment
depending on the radial extension ratio a/r0. For a/r0 = 2 Eq.
(28) gives a value 20% lower (hydroxylated silica) and 60%
lower (phenoxybenzene silica) than that obtained from Chen
et al. model, Eq. (29), which is interphase independent [17];

– Finally, with reference to the silica nanoparticle/polyimide
composites studied in [10], it has been shown that the different
interphase properties, resulting from different surface function-
alizers, have a significant effect on the debonding stress for
nanoparticle radii below 50 nm.
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Appendix A

Let us consider the system shown in Fig. 1. At incipient debond-
ing, the Global Stress Concentration Tensor (GSCT) can be used to
link the average stress tensor in the nanoparticle, r, and the stress
tensor in the overall composite, S, according to the following
expression:

r ¼ H : S ðA:1Þ

H is a fourth order isotropic tensor; in general such a tensor can be
decoupled into a hydrostatic (spherical) component and a deviator-
ic component [31]:
H ¼ HhIh þ HdId ðA:2Þ

where Ih and Id can be written as:

Ih;ðijklÞ ¼
1
3

dijdkl

Id;ðijklÞ ¼
1
2

dikdjl þ dildjk �
2
3

dijdkl

	 
 ðA:3Þ

d is the Kronecker delta and Hh and Hd are constants.
Equivalently, Eq. (A.2) can be re-written in the following form

[31]:

H ¼ ðHh;HdÞ ðA:4Þ

Then, according to Eq. (A.4), and accounting for the spherical sym-
metry of the problem, Eq. (A.1) can be re-written as:

ðrcr;0Þ ¼ ðHh;HdÞ � ðS;0Þ ðA:5Þ

Finally, considering only the hydrostatic component of Eq. (A.5), it
results:

rcr ¼ HhS ðA:6Þ

or, equivalently:

S ¼ Chrcr ðA:7Þ

where Ch is then the reciprocal of the hydrostatic components of the
Global Stress Concentration Tensor.
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