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This contribution proposes a general constitutive model to simulate the orthotropic stiffness, pre-peak
nonlinearity, failure envelopes, and the post-peak softening and fracture of textile composites.
Following the microplane model framework, the constitutive laws are formulated in terms of stress and

strain vectors acting on planes of several orientations within the material meso-structure. The model
exploits the spectral decomposition of the orthotropic stiffness tensor to define orthogonal strain modes
at the microplane level. These are associated to the various constituents at the mesoscale and to the
material response to different types of deformation. Strain-dependent constitutive equations are used
to relate the microplane eigenstresses and eigenstrains while a variational principle is applied to relate
the microplane stresses at the mesoscale to the continuum tensor at the macroscale.
The application of the model to a twill 2 � 2 shows that it can realistically predict its uniaxial as well as

multi-axial behavior. Furthermore, the model shows excellent agreement with experiments on the axial
crushing of composite tubes, this capability making it a valuable design tool for crashworthiness appli-
cations.
The formulation is computationally efficient, easy to calibrate and adaptable to other kinds of compos-

ite architectures such as 2D and 3D braids or 3D woven textiles.
� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Thanks to their excellent specific mechanical performances and
the recent developments in manufacturing technologies, the range
of engineering applications of textile composites is continuously
expanding. Current applications include land, marine and air trans-
portation, wind and tidal energy production, and blast protection
of civil infrastructures and vehicles [1–3]. However, in order to
take advantage of the outstanding characteristics of these materi-
als, design tools to simulate the orthotropic stiffness, pre-peak
nonlinearity, failure envelopes, and the post-peak softening and
fracture are quintessential.

Since the pioneering works by Ishikawa and Chou [4,5] and
Ishikawa et al. [6], several formulations have been proposed, with
varying degrees of success, to model the elastic properties of textile
composites [7–13] and their failure mechanisms [14–20]. In gen-
eral, however, these models stand on strength criteria to describe
failure of the mesoscale constituents thus lacking completely of
any description of the fracture mechanics involved. This is a
serious deficiency being extensive intra-laminar cracking one of
the main failure mechanisms in most applications of textile
composites.

Modeling the fracturing behavior of textile composites, not only
requires a fracture mechanics framework, it also urges the
acknowledgment of their quasi-brittle character which highly
affects the process of crack nucleation and growth. In facts, due
to the complex mesostructure characterizing quasi-brittle materi-
als (such as composites and nanocomposites, ceramics, rocks, sea
ice, bio-materials and concrete, just to mention a few), the extent
of the non-linear Fracture Process Zone (FPZ) occurring in the pres-
ence of a macrocrack is usually not negligible [21]. The stress field
along the FPZ is nonuniform and decreases with crack opening
gradually, due to discontinuous cracking, crack bridging by fibers,
and frictional pullout of inhomogeneities. As a consequence, the
fracturing behavior and, most importantly, the energetic size effect
and the quasibrittleness effect associated with structure geometry,
cannot be described by means of the classical Linear Elastic Frac-
ture Mechanics (LEFM). To capture the effects of a finite FPZ size,
the introduction in the formulation of a characteristic (finite)
length scale of the material is necessary [21,22]. This is attempted
in the present work.
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Inspired by a recent theoretical framework for unidirectional
composites by Cusatis et al. [23,24], this contribution aims at
proposing a general constitutive model to simulate the damaging
and fracturing behavior of textile composites. The formulation
stands on the definition of strain-dependent constitutive laws in
terms of stress and strain vectors acting on planes of several orien-
tations within the material meso-structure. In this way, the model
can easily capture various physical inelastic phenomena typical of
fiber and textile composites such as: matrix microcracking, micro-
delamination, crack bridging, pullout, and debonding.

Thanks to the coupling with the crack band model [25,26], the
formulation is endowed with a characteristic length dependent
on the strength and the fracture energy of the material. This is
key to capture the intra-laminar size effect, a salient feature of
composite structures. This aspect, too often overlooked in the liter-
ature on composites, is a determinant factor for damage tolerance
design of large composite structures.

2. Theoretical framework

2.1. Microplane model

Inspired by the slip theory of plasticity pioneered by Taylor [27]
and later refined by Batdorf and Budiansky [28], the microplane
theory was originally developed to describe the softening damage
of heterogeneous but statistically isotropic materials such as con-
crete and rocks [29,30]. Since its introduction in the early 1980s,
the microplane model for concrete has evolved through 7 progres-
sively improved versions labeled as M1 [29,30], M2 [31], M3 [32],
M4 [33,34], M5 [35], M6 [36], M7 [37] and it has been recently
adopted for the simulation of concrete at early age [38]. Micro-
plane models have also been developed for other complex materi-
als such as jointed rock [39], sand, clay, rigid foam, shape memory
alloys, and unidirectional and textile composites [23,24,40–44]. A
high order microplane model [45] was also derived recently on
the basis of an underlying discrete model [46,47].

A key feature of the microplane model is that the constitutive
laws are formulated in terms of the stress and strain vectors acting
on a generic plane of any orientation within the material meso-
structure, called the microplane. These planes can be conceived as
the tangent planes of a unit sphere surrounding every point in
the three-dimensional space (Fig. 1a). The microplane strain vec-
tors are the projections of the macroscopic strain tensor, whereas
the macroscopic stress tensor is related to the microplane stress
vectors via the principle of virtual work. The adoption of vectors
rather than tensors makes the approach conceptually clearer while
the introduction of microplanes allows to inherently embed the
effect of the mesostructure into the formulation.
(a) (b)

Fig. 1. Schematic representation of (a) the Representative Unit Cell of a 2 � 2 twill
composite with its local coordinate system and the microplanes used to define the
constitutive laws of the material; (b) local spherical coordinate system.
In this contribution, a kinematically constrained microplane
model is adopted. This means that the strain vector on each micro-
plane is the projection of the macroscopic strain tensor. In kelvin
notation [48,49] this reads:

eP ¼ Pe ð1Þ

where eP ¼ eN eM eL½ �T represents the microplane strain vector
(Fig. 1a) with eN ¼ normal strain component and eM and eL ¼ shear
strain components. Further,
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is a 3� 6 matrix relating the macroscopic strain tensor to the
microplane strain as a function of the plane orientation. As matter
of fact, Nij ¼ ninj; Mij ¼ ðminj þmjniÞ=2 and Lij ¼ ðlinj þ ljniÞ=2,
where ni;mi and li are local Cartesian coordinate vectors on the
generic microplane with ni being the i-th component of the
normal (Fig. 1a). With reference to the spherical coordinate
system represented in Fig. 1b, the foregoing components can
be expressed as a function of the spherical angles h and
u : n1 ¼ sin h cosu; n2 ¼ sin h sinu, n3 ¼ cos h while one can
choose m1 ¼ cos h cosu; m2 ¼ cos h sinu; m3 ¼ � sin h which
gives, for orthogonality, l1 ¼ � sinu; l2 ¼ cosu and l3 ¼ 0.

According to the microplane framework, the constitutive laws
are then defined at the microplane level in a vectorial form. This
makes the formulation conceptually clear and allows embedding
the effect of the direction of damage in the constitutive law auto-
matically. After the microplane stress vectors rP are computed, the
macroscopic stress tensor is defined in a variational sense through
the principle of virtual work:

r ¼ 3
2p

Z
X
PTrPdX ð3Þ

where X is the surface of a unit sphere representing all the possible
microplane orientations.

2.2. Spectral decomposition of the elastic tensor

In the microplane formulation, the material anisotropy is
addressed by decomposing the stress and strain tensors into ener-
getically orthogonal modes through the spectral stiffness decompo-
sition theorem [50–53]. The following sections are intended to
provide a brief introduction of the theory.

2.2.1. Spectral decomposition of the elastic tensor
The elastic behavior of a general anisotropic material can be

expressed in Kelvin notation [48,49] as:

r ¼ Ce ð4Þ

where r ¼ r11 r22 r33
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e12�T are the contracted forms of the stress and strain

second-order tensors and C represents the contracted form of the
fourth-order elastic tensor. The indices refer to Cartesian coordinates
xi (i ¼ 1;2;3) as defined in (Fig. 1a and b). It is worthmentioning here
that the factor

ffiffiffi
2

p
assures that both the stiffness tensor and its col-

umn matrix have the same norm, given by the sum of the squares
of their elements.

According to the spectral decomposition theorem [50–53], the
stiffness matrix C can be decomposed as follows:

C ¼
X
I

kðIÞCðIÞ ð5Þ



Table 1
Experimental elastic properties of carbon twill 2 � 2 composite.

Description Symbol (units) Measured value

In-plane modulus E ¼ E2 ¼ E3 (GPa) 53.5
Out-of-plane modulus E0 ¼ E1 (GPa) 11.0a

In-plane shear modulus G = G23 (GPa) 4.5
Out-of-plane shear modulus G0 ¼ G12 ¼ G13 (GPa) 3.6a

In-plane Poisson ratio m ¼ m23 ¼ m32 (–) 0.055
Out-of-plane Poisson ratio m0 ¼ m31 ¼ m21 (–) 0.4a

a Properties estimated from [56,57].
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where I ¼ 1;2 . . .6; kðIÞ are the eigenvalues of the stiffness matrix

and CðIÞ ¼Pn/In/
T
In are a set of second-order tensors constructed

from the elastic eigenvectors /I . The Ith eigenvector /I has multi-

plicity n and is normalized such that /T
I C

ðIÞ
/I ¼ kðIÞ.

In general, the elastic eigenvalues and eigenmatrices can be
found by solving the following eigenvalue problem:

C � kðIÞI
h i

v ¼ 0 ð6Þ

where the number of independent elastic eigenvalues is strictly
related to the degree of anisotropy of the material. In general aniso-
tropy, the solution of Eq. (6) provides 6 independent eigenvalues
which are functions of the 21 independent elastic constants of the
material.

It is worth mentioning that the eigenmatrices CðIÞ are:

1. partition of unity, i.e.
P

IC
ðIÞ ¼ I;

2. orthogonal, i.e. CðIÞCðJÞ ¼ 0 if I – J;

3. idempotent, i.e. CðIÞCðIÞ ¼ CðIÞ.

Moreover, the property (2) above leads to energetic orthogonality:

dW IJ ¼ rT
I deJ ¼ kðIÞeTI deJ ¼ kðIÞeTCðIÞCðJÞde ¼ 0.

An important characteristic of the elastic eigenmatrices CðIÞ is
that they provide a way to decompose the stress and strain tensors
into energetically orthogonal modes. These are called here eigen-
stresses and eigenstrains and are defined as:

rI ¼ CðIÞr and eI ¼ CðIÞe ð7Þ
It is easy to show that r ¼PIrI and e ¼PIeI whereas the relation
between eigenstresses and eigenstrains can be found introducing
the related elastic eigenvalues: rI ¼ kðIÞeI.

A similar analysis can be applied to the compliance elastic
matrix S ¼ C�1. In this case, the relation between the compliance
matrix and its eigenmatrices reads:

S ¼
X
I

kðIÞ
� ��1

SðIÞ ð8Þ

where it could be easily shown that the compliance eigemenmatri-
ces coincide with the ones derived from the stiffness tensor,

SðIÞ � CðIÞ.

2.2.2. Microplane model with spectral decomposition
In this section, the decomposition of the strain tensor into ener-

getically orthogonal eigenstrains through the spectral decomposi-
tion of the elastic tensor is adopted to extend the microplane
approach to general anisotropic materials. By the spectral decom-
position of the strain tensor and a separate projection of each
eigenstrain, each microplane vector can be decomposed into
microplane eigenstrain vectors as:

eP ¼
XN
I

eðIÞP where
eðIÞP ¼ PeðIÞ ¼ PðIÞe

PðIÞ ¼ PCðIÞ

(
ð9Þ

where N ¼ number of independent eigenmodes.
The main advantage is that now, different constitutive laws

describing the material behavior at the microplane level can be
related to each eigenmode. As it will be clear in the following sec-
tions, this not only allows the description of the material aniso-
tropy but also to address the different damaging mechanisms
related to different loading conditions. Accordingly, from the

microplane eigenstrains, the microplane eigenstresses rðIÞ
P can be

defined through specific constitutive laws: rðIÞ
P ¼ f eP1; eP2 . . .ð ÞeðIÞP .

Then, substituting the microplane eigestresses into Eq. (3) and
recalling Eq. (7), the macroscopic stress tensor can be computed
in a variational sense through the principle of virtual work [23]:

r ¼ 3
2p

Z
X
PT
XN
I

rðIÞ
P dX ð10Þ

where X is the surface of a unit sphere representing all the possible
microplane orientations. It is worth mentioning here that Eq. (10)
represents a weak variational constraint. In general, the projection
of the stress tensor does not coincide with the microplane eigen-

stress, i.e. rðIÞ
P – PðIÞr. Such a coincidence, called double constraint,

holds in the elastic regime if and only if the microplane eigenstress
vector is proportional to microplane eigenstrain vector through the

related eigenvalue, as shown by Cusatis et al. [23]: rðIÞ
P ¼ kðIÞeðIÞP .

2.3. Analysis of microplane eigenstrain modes and physical
interpretation

It is useful to study the distribution of the normal components
of each microplane eigenstrain on the microplane sphere to give a
physical interpretation. This is key to define physically-based con-
stitutive laws capable of addressing both material and damage-
induced anisotropy.

2.3.1. Strain decomposition for a twill 2 � 2 composite
In order to exemplify the application of the spectral stiffness

decomposition theorem to the microplane model, let us consider
the case of a textile composite reinforced by a 2 � 2 twill fabric
made of carbon fibers. The elastic properties of the material can
be found in Table 1 while the Representative Unit Cell (RUC) for
this material is represented in Fig. 1a together with the local coor-
dinate system used to define the elastic tensor of the material. As
can be noted, planes 1–2, 1–3 and 2–3 represent 3 planes of mate-
rial symmetry so that the material can be considered as orthotropic
[54].

For an orthotropic material, the number of independent elastic
constants is 9. However, for the case of a twill 2 � 2, the in-plane
elastic moduli as well as the out-of-plane Poisson ratios and shear
moduli are usually almost the same (i.e. E3 � E2 ¼ E; m13 � m12 ¼ m0

G13 � G12 ¼ G0 respectively). Accordingly, the elastic compliance
tensor, S, can be expressed as a function of only 6 elastic constants
as:

S ¼

1=E0 �m0=E �m0=E 0 0 0
�m0=E 1=E �m=E 0 0 0
�m0=E �m=E 1=E 0 0 0

0 0 0 1=2G 0 0
0 0 0 0 1=2G0 0
0 0 0 0 0 1=2G0

2
666666664

3
777777775

ð11Þ

where m ¼ m23 ¼ m32 ¼ in-plane Poisson ratio and G ¼ G23 ¼ in-plane
shear modulus. The elastic stiffness tensor can be computed as
C ¼ S�1.
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Thanks to the material symmetry, the solution of the elastic
eigenvalue problem in Eq. (6) can be carried out analytically giving
the following 5 independent elastic eigenvalues:

kð1Þ
� ��1

¼ 1
2E0 þ

1� m
2E

�
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The related eigematrices, constructed from the normalized eigen-
vectors, are:

Cð1Þ
ij ¼ v2d1j þ v d1jd2i þ d2jd1i þ d1jd3i þ d3jd1i

� �þ d2j di2 þ d3ið Þ þ d3j di3 þ d2ið Þ
2þ v2

Cð2Þ
ij ¼ ðd2j � d3jÞðdi2 � di3Þ

2

Cð3Þ
ij ¼ n2d1j þ n d1jd2i þ d2jd1i þ d1jd3i þ d3jd1i

� �þ d2j di2 þ d3ið Þ þ d3j di3 þ d2ið Þ
2þ n2

Cð4Þ
ij ¼ di5d5j þ di6d6j

Cð5Þ
ij ¼ di4d4j

ð13Þ
where dij ¼ Kronecker delta, i; j ¼ 1;2 . . .6 and:

v ¼ E0ð1� mÞ
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are dimensionless constants which depend on the elastic properties
of the material system.

2.3.2. Microplane eigenstrain distribution
After the spectral decomposition of the stiffness matrix,

the expressions for the normal, eðIÞN , and total shear eðIÞT ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðeðIÞM Þ2 þ ðeðIÞL Þ2

q
components can be easily computed substituting

Eqs. (2) and (13a–e) into Eq. (9). As can be noted from their
expressions, reported in Table 2, the microplane eigenvector
components depend on (1) the applied macroscopic strains
through the functions a¼ e2þe3þe1vð Þ= 2þv2

� �
;b¼1=2 e3�e2ð Þ,

c¼ e2þe3þe1nð Þ= 2þn2
� �

, (2) the orientation of the microplane
normals and 3) the material elastic properties through the
dimensionless constants n and v defined in Eq. (14a and b).
Table 2
Microplane eigenstrains: normal and tangential components.

Mode eðIÞN

1 a cos2 hþ v cos2 uþ sin2 u
� �

sin2 h
h i

2 b sin2 h� sin2 u sin2 h
� �

3 c cos2 hþ n cos2 uþ sin2 u
� �

sin2 h
h i

4 e4 sinu sin 2h

5 e5 cosu sin 2hþ e6 sin
2 h sin 2u

Where a ¼ e2 þ e3 þ e1vð Þ= 2þ v2
� �

; b ¼ 1=2 e3 � e2ð Þ, c ¼ e2 þ e3 þ e1nð Þ=ð2þ n2Þ.
According to Eq. (14a and b), n ¼ �10:0 and v ¼ 0:2 respectively
for the material under study and the distribution of normal and
shear components can now be analyzed for different applied
strains at the macroscale. Let us now consider the distribution of
the normal strain components on the microplane sphere caused
by a macroscale uniaxial strain applied along the x2-axis or the
x3-axis (Fig. 2a and b). Strain mode 4 and strain mode 5 are exactly
zero because they do not depend on e2 and e3 whereas mode 3 is
nonzero but negligible compared to modes 1 and 2. As can be
noted from Fig. 2, which represents the distribution of the normal
components of mode 1 and 2 on the microplane sphere, mode 1
acts as a volumetric-like mode, being uniformly distributed along
the 2–3 plane. Conversely, mode 2 acts as a deviatoric-like mode,
loading mainly the microplanes whose normal is close to the direc-
tion of application of the macroscale strain. The two modes have
almost the same magnitude in the direction of application of the
macroscale strain (Fig. 2a and b). Since both modes describe the
uniaxial behavior of the material system in the plane of the fabric,
it is convenient to consider the effect of the two modes summed

together: eð12ÞP ¼ k1=k2e
ð1Þ
P þ eð2ÞP . The resulting mode will be referred

as mode 12 in the following. It should be noted that mode 1 is
weighted by the ratio between the first and the second eigenvalues
of the elastic tensor, which for most of textile composites is within
0.8–1.2. The reason of this choice will be clear in Section 2.4.3. As
Fig. 2 shows, mode 12 describes the in-plane uniaxial behavior of
the material in the direction of application of the load. Being the
in-plane behavior a ‘‘fiber-dominated” property, this analysis
shows that the response of the composite material subjected to
strain mode 12 strongly depends on the behavior of the fibers.

A different picture arises if one considers a uniaxial strain at the
macroscale applied in the out-of-plane direction, i.e. x1-axis. Strain
mode 4 and strain mode 5 are exactly zero because they do not
depend on e1 while mode 12 is nonzero but negligible compared
to mode 3. Fig. 3 shows the distribution of the normal strain com-
ponent. It can be concluded that mode 3 is mainly related to the
behavior of the material system when subjected to an out-of-
plane uniaxial strain at the macroscale, e1. The behavior in this
direction is expected to be ‘‘matrix-dominated” as the fabric and
the matrix mainly act in series coupling in this direction of loading.

As can be expected from the equations describing its microplane
strain components (Table 2), mode 4 is activated only in the pres-
ence of a macroscopic in-plane shear strain, i.e. e4. In this configu-
ration, all the other modes are zero while mode 4 acts mainly on
microplanes oriented in direction h ¼ p=4 (Fig. 4). The in-plane
shear behavior is highly dictated by the matrix. Accordingly, as
for mode 3, mode 4 can be considered as a ‘‘matrix dominated
mode”. Similar considerations can be drawn for mode 5, this mode
being activated in the presence of macroscopic out-of-plane shear
strains, i.e. e5 and e6. For this case, the distribution of the normal
component of the microplane eigenstrain is shown in Fig. 5.
eðIÞT

1
2
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q



Fig. 2. Distribution of the normal microplane strain related to (a) mode 1, (b) mode 2 and (c) mode12 in the presence of a uniaxial macroscopic strain in plane 2–3.

Fig. 3. Distribution of the normal microplane strain related to mode 3 in the
presence of a uniaxial macroscopic strain e1.

Fig. 4. Distribution of the normal microplane strain related to mode 4 in the
presence of a macroscopic in-plane shear strain e4.

Fig. 5. Distribution of the normal microplane strain related to mode 5 in the
presence of macroscopic out-of-plane shear strains e5 and e6.
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2.4. Formulation of microplane constitutive laws

In this section, the microplane constitutive laws which, for each
eigenmode, provide the relationship between the strain vector and
the stress vector at the microplane level, are presented.

2.4.1. Elastic behavior
The elastic behavior is formulated by assuming that normal and

shear eigenstresses on the microplanes are proportional to the cor-
responding eigenstrains:

rðIÞ
N ¼ kðIÞeðIÞN ; rðIÞ

M ¼ kðIÞeðIÞM ; rðIÞ
L ¼ kðIÞeðIÞL ð15Þ

where kðIÞ ¼ Ith elastic eigenvalue. It should be noted that, as proved
by Cusatis et al. in [23], these relations guarantee a double con-
straint in the elastic regime, i.e. the projection of the stress tensor

does coincide with the microplane eigenstress: rðIÞ
P ¼ PðIÞr. This con-

dition is not generally true and it is violated as soon as the material
reaches the inelastic regime.

2.4.2. Inelastic behavior: general constitutive law at microplane level
The spectral stiffness microplane formulation of the nonlinear

and inelastic behavior aims at representing the main physical
mechanisms characterizing the meso-scale failure such as e.g. fiber
failure, fiber–matrix debonding and matrix microcracking.

Let us consider a generic Ith eigenmode and, following Cusatis
et al. [46,55], define a microplane effective eigenstrain as:

eðIÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eðIÞN
� �2

þ eðIÞT
� �2r

ð16Þ

where eðIÞT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eðIÞM
� �2

þ eðIÞL
� �2r

= total shear strain component of Ith

microplane eigenstrain. The constitutive law can then be defined by
means of an effective eigenstress, rðIÞ. The relation between the stress
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and strain microplane components can be found imposing the con-
sistency of the virtual work:

dW I ¼ rðIÞdeðIÞ ¼ rðIÞ

eðIÞ
eNdeN þ eMdeM þ eLdeLð ÞðIÞ

¼ rNdeNð ÞðIÞ þ rMdeMð ÞðIÞ þ rLdeLð ÞðIÞ ð17Þ
where, it should be noted, thanks to the definition in Eq. (16) and to
Eq. (17), dW I P 0 for all the microplanes. This means that energy
dissipation on each microplane is non-negative, a sufficient condi-
tion to fulfill the second law of thermodynamics.

By means of Eq. (17), the relationship between normal and
shear stresses versus normal and shear strains can be formulated
through damage-type constitutive equations:

rðIÞ
N ¼ reN

e

� �ðIÞ
; rðIÞ

M ¼ reM
e

� �ðIÞ
; rðIÞ

L ¼ reL
e

� �ðIÞ
ð18Þ

It is worth pointing out that, substituting Eqs. (18) into (16) and
rearranging, leads to the following definition of the Ith effective

stress: rðIÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrðIÞ

N Þ2 þ ðrðIÞ
T Þ2

q
where rðIÞ

T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrðIÞ

M Þ2 þ ðrðIÞ
L Þ2

q
= total

shear stress component.
The effective stress rðIÞ is assumed to be incrementally elastic,

i.e. _rðIÞ ¼ kðIÞ _eðIÞ and it is formulated such that

0 6 rðIÞ 6 rðIÞ
bi ðeð12Þ; eð3Þ . . . ; h;uÞ where rðIÞ

bi ðeð12Þ; eð3Þ . . . ; h;uÞ with
subscript i ¼ t for tension and i ¼ c for compression is a limiting
boundary enforced through a vertical (at constant strain) return

algorithm. It is worth mentioning here that, in general, rðIÞ
bi is a

function of the microplane orientation and of the equivalent
strains pertaining to other modes. This allows to inherently embed
in the formulation the effects of damage anisotropy and the inter-
action between damage mechanisms.

As clarified in Section 2.4.7, each mode can be ascribed to a par-
ticular micromechanical constituent and a type of deformation.
This make them particulary suitable for the description of the
diverse damage mechanisms of the material through eigenmode-
dedicated boundaries, the description of which being the subject
of the following sections.

2.4.3. Inelastic behavior: mode 12
As discussed in Section 2.3, since both modes 1 and 2 describe

the fiber behavior in the presence of a macroscopic uniaxial in-
plane strain, it is convenient to combine them together. Accord-
ingly, the formulation of the effective strain and stress has to be
changed to guarantee work consistency.

Let us define mode 12 effective microplane eigenstrain as:

eð12Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kð1Þ

kð2Þ
eð1ÞN

� �2
þ eð1ÞT

� �2	 

þ eð2ÞN

� �2
þ eð2ÞT

� �2s
ð19Þ

After introducing the equivalent stress, rð12Þ, the virtual work can be
calculated as done in Eq. (17):

dW12 ¼ rð12Þ

eð12Þ
kð1Þ

kð2Þ
eð1ÞN deð1ÞN þ eð1ÞM deð1ÞM þ eð1ÞL deð1ÞL

� �
þ eð2ÞN deð2ÞN

"

þeð2ÞM deð2ÞM þ eð2ÞL deð2ÞL

i
ð20Þ

Now, recalling that dW12 ¼P2
I¼1r

ðIÞ
N deðIÞN þ rðIÞ

M deðIÞM þ rðIÞ
L deðIÞL , the

relationship between normal and shear stresses versus normal
and shear strains can be formulated through the following
damage-type constitutive equations:

rð12Þ
N ¼ rð12Þ

eð12Þ
kð1Þ

kð2Þ
eð1ÞN þ eð2ÞN

 !
; eð12ÞM ¼ rð12Þ

eð12Þ
kð1Þ

kð2Þ
eð1ÞM þ eð2ÞM

 !
;

rð12Þ
L ¼ rð12Þ

eð12Þ
kð1Þ

kð2Þ
eð1ÞL þ eð2ÞL

 !
ð21Þ
Again, combining Eqs. (21) with (19) one gets the new
definition of the effective stress: rð12Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kð2Þ=kð1Þ rð1Þ

N

� �2
þ rð1Þ

T

� �2	 

þ rð2Þ

N

� �2
þ rð2Þ

T

� �2s
. The aforemen-

tioned definition of the effective strain and stress guarantees the
correct description of the elastic behavior. As a matter of fact,
assuming the effective stress rð12Þ to be incrementally elastic, i.e.
_rð12Þ ¼ kð2Þ _eð12Þ, one obtains again Eqs. (15).

The strain dependent limiting boundary, rð12Þ
bi ðeð12Þ; eð3Þ; . . . ; h;uÞ,

is expressed as follows:

rð12Þ
bt ¼ sð12Þ h;u; eð5Þmax

� �
exp � eð12�tÞ

max �eð12Þ0th i
kð12Þ
bt

� �at12	 

for kð1Þ

kð2Þ
eð1ÞN þ eð2ÞN P 0

rð12Þ
bc ¼ cð12Þ h;u; eð5Þmax

� �
exp � eð12�cÞ

max �eð12Þ
0ch i

kð12Þ
bc

� �ac12	 

for kð1Þ

kð2Þ
eð1ÞN þ eð2ÞN < 0

8>>><
>>>:

ð22Þ
where the brackets h�i are used in Macaulay sense: hxi ¼ maxðx;0Þ.
The functions sð12Þ h;u; eð4Þmax

� �
¼ sð12Þ0 eð4Þmax

� �
and cð12Þ h;u; eð4Þmax

� �
¼

cð12Þ0 eð4Þmax

� �
represent mode 12 microplane tensile and compressive

strength respectively which, in general, depend on the microplane
orientation. However, for the material under study and for most
of symmetric textile composites in which the behavior in the warp
direction is similar to the weft direction, they can be assumed
constant.

The microplane strengths depend, in general, on the maximum

effective mode 4 strain, eð4Þmax. The interaction between the different
modes will be clarified in Section 2.4.7.

As can be seen in Fig. 6a, the boundary r12
bi evolves exponen-

tially as a function of the maximum effective strain, which is a

history-dependent variable defined as eð12�iÞ
max ðtÞ ¼ maxs6t ½eð12ÞðtÞ�

with i ¼ t for tension and i ¼ c for compression. The exponential
decay of the boundary r12

bi starts when the maximum effective

strain reaches its elastic limit eð12Þ0t ðh;u; eð5ÞmaxÞ ¼ sð12Þ=kð12Þ and

eð12Þ0c ðh;u; eð5ÞmaxÞ ¼ cð12Þ=kð12Þ for tension and compression respec-
tively. The decay rate is governed by the post-peak slope (Fig. 6a)
which, as can be derived from Eq. (22), reads:

Ht eð12Þmax

� �
¼ r12

bt
at12

kð12Þ
bt

eð12�tÞ
max �sð12Þ=kð12Þ

kð12Þ
bt

� �at12�1

in tension

Hc eð12Þmax

� �
¼ r12

bt
ac12

kð12Þ
bc

eð12�cÞ
max �cð12Þ=kð12Þ

kð12Þ
bc

� �ac12�1

in compression

8>>>><
>>>>:

ð23Þ

For at12; ac12 < 1 the initial softening modulus goes to infinity, i.e.
the curve has an initial vertical slope. This seems to match perfectly
the in-plane behavior of composites which behave elastically up to
the peak in stress before softening. In general, the total number of
required parameters to describe mode 12 in tension and compres-
sion is 6. However, in absence of specific experimental data, the
exponents at12; ac12 can be set equal, as done in the present work
(see Table 3).

2.4.4. Inelastic behavior: mode 3
As shown in the previous sections, the 3rd mode can be related

to the normal deformation in the out-of-plane direction. The
strain dependent boundary can be expressed by the following
equations:

rð3Þ
bt ¼ sð3Þ h;uð Þ 1� eð3�tÞ

max �kð3Þath i
kð3Þ
bt

� �
for eN3 P 0

rð3Þ
bc ¼ cð3Þ h;uð Þ 1� eð3�cÞ

max �kð3Þach i
kð3Þ
bc

� �
for eN3 < 0

8>>><
>>>:

ð24Þ
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Fig. 6. Spectral stiffness microplane constitutive laws. (a) Typical stress boundary for mode 12 with exponential decay; (b) typical bilinear boundary for mode 3; (c) mode 4
and 5 inelastic stress boundaries; (d) typical unloading–reloading rule for a Ith generic mode.

Table 3
Material model parameters, calibrated by means of uniaxial and size effect tests, describing the in-plane behavior of the composite.

Mode Description Symbol (units) Calibrated value

12 Mode 1 elastic eigenvalue kð1Þ (GPa) 61.85a

Mode 2 elastic eigenvalue kð2Þ (GPa) 50.71a

Microplane peak stress in tension sð12Þ0 (MPa) 400

Parameter governing post-peak softening in tension kð12Þbt (–) 30:60� 10�3

Parameter governing post-peak softening in tension a12t (–) 0.75
Microplane peak stress in compression cð12Þ0 (MPa) 405

Parameter governing post-peak softening in compression kð12Þbc (–) 30:60� 10�3

Parameter governing post-peak softening in compression ac12 (–) 0.75

4 Mode 4 elastic eigenvalue kð4Þ (GPa) 8.10a

Microplane stress in tension at start of non-linear boundary sð4Þ0 (MPa) 45

Exponent governing pre-peak non-linearity in tension and compression p (–) 0:3
Strain at starting of post-peak softening in tension kð4Þat (–) 124:6� 10�3

Parameter governing post-peak softening in tension kð4Þbt (–) 120:15� 10�3

Microplane stress in compression at start of non-linear boundary cð4Þ0 (MPa) 45

Strain at starting of post-peak softening in compression kð4Þac (–) 124:6� 10�3

Parameter governing post-peak softening in compression kð4Þbc (–) 120:15� 10�3

a Calculated by means of Eq. (12a–d).
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where sð3Þ h;uð Þ ¼ sð3Þ0 ¼ mode 3 microplane tensile strength,

cð3Þ h;uð Þ ¼ cð3Þ0 ¼ mode 3 microplane compressive strength. These
functions are both assumed to be independent on the microplane
orientation. As can be seen in Fig. 6b, Eq. (24a and b) result into a

bilinear boundary in tension and compression. The parameters kð3Þat

and kð3Þac represent the value of the effective strain at the beginning

of the linear softening region whereas the parameters kð3Þbt and kð3Þbc
are defined such that kð3Þbt þ kð3Þat and kð3Þbc þ kð3Þac represent the value

of the effective strain when rð3Þ
bi ¼ 0 in tension and compression

respectively. The total number of required parameters to describe
mode 3 in tension and compression is 6. However, in most of appli-
cations of composite laminates, the out-of-plane stress is often
negligible. Accordingly, the material is likely to behave elastically
in this direction so that an accurate characterization of the param-
eters related to mode 3 is not required. In the present work, in the



Table 4
Material model parameters related to the out-of-plane behavior of the composite. The parameters for mode 3 were estimated from [56,57]. Mode 5 parameters were assumed to
have the same values as for mode 4.

Mode Description Symbol (units) Calibrated value

3 Mode 3 elastic eigenvalue kð3Þ (GPa) 10.82a

Microplane peak stress in tension sð3Þ0 (MPa) 90

Strain at starting of post-peak softening in tension kð3Þat (–) 4:0� 10�3

Parameter governing post-peak softening in tension kð3Þbt (–) 20� 10�3

Microplane peak stress in compression cð3Þ0 (MPa) 90

Strain at starting of post-peak softening in compression kð3Þac (–) 4:0� 10�3

Parameter governing post-peak softening in compression kð3Þbc (–) 20� 10�3

5 Mode 5 elastic eigenvalue kð5Þ (GPa) 7.20a

Microplane stress in tension at start of non-linear boundary sð5Þ0 (MPa) 45

Exponent governing pre-peak non-linearity in tension and compression p (–) 0:3
Strain at starting of post-peak softening in tension kð5Þat (–) 124:6� 10�3

Parameter governing post-peak softening in tension kð5Þbt (–) 120:15� 10�3

Microplane stress in compression at start of non-linear boundary cð5Þ0 (MPa) 45

Strain at starting of post-peak softening in compression kð5Þac (–) 124:6� 10�3

Parameter governing post-peak softening in compression kð5Þbc (–) 120:15� 10�3

a Calculated by means of Eqs. (12a–d).
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absence of direct experimental data, mode 3 parameters are esti-
mated from [56,57] assuming that the out-of-plane behavior is
‘‘matrix-dominated” (see Table 4).

2.4.5. Inelastic behavior: mode 4
The 4th mode is related to in-plane shear deformation. In this

type of deformation, the material is subjected to extensive micro-
cracking before reaching the peak in stress which produces a
remarkable non-linear behavior. In order to capture this phe-
nomenon, the strain dependent boundary is expressed by the fol-
lowing equations:

rð4Þ
bt ¼ sð4Þ

� �1�p
kð4Þ
� �p eð4�tÞ

max

� �p
; if eð4�tÞ

max 6 sð4Þ=kð4Þ

kð4Þat

� �p
1� eð4�tÞ

max �kð4Þath i
kð4Þ
bt

� �
; if eð4�tÞ

max > sð4Þ=kð4Þ

8>><
>>:

ð25Þ

for eð4ÞN P 0 and

rð4Þ
bc ¼ cð4Þ

� �1�p
kð4Þ
� �p eð4�cÞ

max

� �p
; if eð4�cÞ

max 6 cð4Þ=kð4Þ

kð4Þac

� �p
1� eð4�cÞ

max �kð4Þach i
kð4Þ
bc

� �
; if eð4�cÞ

max > sð4Þ=kð4Þ

8>><
>>:

ð26Þ

for eð4ÞN < 0. The functions sð4Þ h;uð Þ ¼ sð4Þ0 and cð4Þ h;uð Þ ¼ cð4Þ0 repre-
sent mode 4 microplane tensile and compressive stresses at which
non-linearity starts and they are both assumed to be independent of
the microplane orientation. p is a parameter controlling the slope of
the curve in the pre-peak region and it assumed to be the same in

tension and compression. The parameters kð4Þat and kð4Þac represent
the value of the effective strain at the beginning of the linear soft-

ening region whereas the parameters kð4Þbt and kð4Þbc are defined such

that kð4Þbt þ kð4Þat and kð4Þbc þ kð4Þac represent the value of the effective

strain when rð4Þ
bi ¼ 0 in tension and compression respectively. A typ-

ical boundary resulting from Eqs. (25) and (26) can be seen in
Fig. 6c. The total number of required parameters to describe mode
4 in tension and compression is 7. In cases in which the macro-
scopic in-plane shear behavior is independent of the sign of the
deformation (which is not always true for textile composites), the
same parameters at microplane level can be used in tension and
compression. In such a case, considered in the present work, the
number of required parameters is 4 as reported in Table 3.
2.4.6. Inelastic behavior: mode 5
Mode 5 describes the shear deformation in the out-of-plane

direction. In the absence of direct experimental data, it is assumed
here that the constitutive behavior at microplane level resembles
the one related tomode 4 (Table 4). It isworth noting that the effects
of this assumption are considered to be negligible since, in practical
situations, out-of-plane shear deformation will always been within
the elastic regime. In facts, inter-laminar cracks would emerge far
before than reaching any nonlinear behavior in the material.
2.4.7. Interaction between eigenmodes
After defining the inelastic boundaries, the interaction between

modes needs to be clarified to capture the complex multi-axial
behavior of textile composites.

The definition of mode 12 effective strain accounts already for
the interaction between the volumetric and the deviatoric in-
plane components at microplane level. As a matter of facts, the

stress peak for mode 12 is reached when eð12Þ ¼ eð12Þ0i with the sub-
script i ¼ t for tension and i ¼ c for compression. This corresponds
to the following microplane strain multi-axial criterion:

kð1Þ

kð2Þ
eð1�iÞ
max

eð12Þ0i

 !2

þ eð2�iÞ
max

eð12Þ0i

 !2

¼ 1 ð27Þ

where the definition of effective strain reported in Eq. (16) has been
used for mode 1 and 2. As soon as Eq. (27) is satisfied, strain soften-
ing starts to occur.

The interaction between mode 12 and mode 4 can be described
in a similar way:

eð12�iÞ
max

eð12Þ0i

 !2

þ eð4�iÞ
max

kð4Þai

 !2

¼ 1 ð28Þ

where again i ¼ t for tension and i ¼ c for compression. As soon as
Eq. (28) is satisfied, the new strains at peak are updated and strain
softening starts to occur. This corresponds to a vertical scaling of the

softening boundary of a factor of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� eð4�iÞ�

max =kð4Þai

� �2r
for mode 12

and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� eð12�iÞ�

max =eð12Þ0i

� �2r
for mode 4. eð4�iÞ�

max and eð12�iÞ�
max represent

the values of the effective strain for mode 4 and 12 respectively
as soon as Eq. (28) is fulfilled.
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Considering the deformations associated to mode 12 and mode
4, it is easy to understand that the criterion in Eq. (28) defines the
mechanical behavior of the material subjected to simultaneous
normal and shear in-plane deformations.

Similar interaction laws for the other modes could also be
defined. However, in the absence of experimental data for valida-
tion, only the interaction between modes 1, 2 and 4 has been con-
sidered in the present work.

2.4.8. General unloading–reloading rule at microplane level
The inelastic formulation needs to be completed by unloading–

reloading rules to simulate cycling loadings and unloading of the
material next to a damaged zone undergoing softening. Fig. 6d
illustrates the unloading–reloading rule adopted in this work in
terms of effective stress versus effective strain.

Let us assume that unloading occurs after the effective strain

increased continuously from zero to a certain value, eðI�iÞ
max where

index i ¼ t for tension and i ¼ c for compression. The effective
stress decreases elastically until it reaches a zero value and
remains constant at zero for further decreases of the effective
strain. During reloading, the effective stress remains zero until

the effective strain reaches the reloading strain limit, eðI�iÞ
tr , and,

beyond this point, the behavior is incrementally elastic. The

reloading strain limit is defined as eðI�iÞ
tr ¼ kðIÞhi ðeðI�iÞ

max � rðIÞ
bi =k

ðIÞÞ where

kðIÞhi is assumed to be a material parameter which governs the size of
hysteresis cycles and, consequently, the amount of energy that the

material can dissipate during cycling loading. For kðIÞhi ¼ 1, the dissi-

pated energy density is zero, whereas for kðIÞhi ¼ 0, it is a maximum

and equal to rðIÞ
bi e

ðI�iÞ
max . In the present contribution, in the absence of

specific experimental data, the dissipated energy density was set
equal to zero for all the eigenmodes.

3. Materials and tests for calibration and validation

3.1. Materials

In order to calibrate and validate the model, experiments were
conducted on twill 2 � 2 woven composite specimens manufac-
tured by compression molding. A DGEBA-based epoxy resin was
chosen as polymer matrix whereas the reinforcement was pro-
vided by a twill 2 � 2 fabric made of carbon fibers. A constant
thickness of approximately 1.9 mm, corresponding to 8 laminae,
was used for all the tests. Two different lay-ups, namely a [0	]8
and a Quasi-Isotropic (Q.I.) ½0	=45	=� 45	=90	]s, were tested in
order to provide sufficient data for calibration and validation.

3.2. Uniaxial tests

Uniaxial tests on coupons were conducted to obtain the elastic
properties and strength of the composite. In order to provide suffi-
cient data in tension and compression and to provide information
regarding the shear behavior of the material, the following test
configurations were adopted:

1. 0	 configuration (conducted on both lay-ups): where the load-
ing axis is aligned with direction 3 of the RUC (see Fig. 1), to
yield axial moduli and strength of the composite lamina, both
under tension and compression;

2. 45	 configuration (conducted for only the [0	]8, under tension),
where the loading direction is at an angle of 45	 with direction 3
(see Fig. 1), to yield the shear modulus and strength of the lamina.

The uni-axial tension tests on the [0	]8 lay-up were used for cal-
ibration of the model whereas, those on the QI layup were used for
validation (i.e. no parameter of the model was changed to match
the experimental results). All the tests were conducted in accor-
dance with ASTM standards [58,59].

3.3. Size effect tests

Following Bažant et al. [22,21], size effect tests were conducted
on single-edge-notched tension (SENT) specimens, using the [0	]8
lay-up. These tests represent an indirect way to characterize the
initial intra-laminar fracture energy of the material, Gf , which is
usually hard to measure directly through uniaxial tests due to
snap-back instability [22,23,43,60].

The tested SENT coupons were of three different sizes, scaled as
1:2:4. The dimensions of the smallest coupon were L = 100 mm,
D = 20 mm and T = 1.9 mm. The length L and width D of the med-
ium and large specimen were scaled accordingly while the thick-
ness T remained constant. Each coupon had on one edge a pre-
cut notch of length a ¼ 0:2D. More details on these tests will be
provided in a forthcoming contribution [61].

3.4. Impact tests on composite crash can

Finally, to verify the predictive capability of the model, impact
tests on composite crash cans were conducted. The crush can con-
sisted of two parts manufactured by compression moulding,
namely a hat section tube and a reinforcing plate glued together
by toughened epoxy glue along flanges (Fig. 11c and d). Two differ-
ent lay-up configurations were studied, namely:

1. hat section tube: ½0	�11, plate: ½0	�8;
2. hat section tube and plate: ½0	=90	=45	=� 45	=

0	=90	=0	=� 45	=45	=90	=0	�;

The composite tubes, accurately fixed at the bottom, were
impacted by a flat mass of 74.4 kg at a velocity of 4.6 m/s in a drop
tower.

4. Calibration and validation

4.1. Finite element implementation

The present model was implemented in Abaqus Explicit v6.11
as a user material subroutine VUMAT [62] and in the special pur-
pose software MARS [63]. The structures studied were meshed
using four-node shell elements with reduced integration and hour-
glass control [64,65].

4.1.1. Crack band model for strain localization
To ensure objective numerical results in the presence of strain

localization, the crack band model proposed by Bažant et al.
[25,26,66] is adopted. In this approach, the width of the damage
localization band, wc , is considered as a material property. This
width is also equal to the mesh size, which was here chosen as
2 mm. A change in the element size requires the scaling of the
post-peak response of the material such that the fracture energy
remains unchanged. The size wc should not be confused with the
size of the RUC, which is roughly 7.5 mm and merely represents
the repeating geometric unit of the material.

Thanks to the crack band model, a characteristic size of the
material is inherently embedded in the formulation. This is key
to correctly describe the intra-laminar fracturing of the material
as will be clear in the following sections.

4.2. Strength and post-peak fracturing behavior

For the calibration of the model, it is now possible to take
advantage of the physical interpretation given to each eigenmode
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in Section 2.3. It is known that the strength and fracture behavior
in the 0	 configuration is governed by mainly the properties of the
fabric, and, in the 45	 configuration, mainly by the matrix proper-
ties in shear.

It was shown that mode 12 is the ‘‘fiber-dominated” mode gov-
erning the in-plane behavior under normal loading condition
whereas mode 4 is the ‘‘matrix-dominated” mode describing the
shear behavior. Accordingly, being these modes completely inde-
pendent, the tests in 0	 configuration can be used to uniquely char-
acterize the constitutive law related to mode 12 whereas the tests
in 45	 configuration can be considered for mode 4. Thus, thanks to
the clear physical interpretation of each mode, the calibration of
constitutive laws becomes straightforward.

In general, the calibration is performed in two steps: (1) Deter-
mination of parameters from computations for one material point
and (2) verification of structural response from coupon level simu-
lations. The need of a two-step process is explained as follows. As
far as the elastic stress–strain behavior and strength are concerned,
the response at one material point and of a coupon under a uni-
form uniaxial load must be the same. However, that is not the case
for the post-peak response due to damage localization. At the
material point level, a stable post-peak strain softening must exist
such that the area under the stress–strain curve is equal to the
fracture energy per unit volume of the crack band. However, just
like the experiments, a stable post-peak cannot be obtained in cou-
pon level simulations. To ensure that the model dissipates the cor-
rect fracture energy, a material point calibration is required.
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4.2.1. Calibration: mode 12
As shown in the foregoing sections, mode 12 is strictly related

to the in-plane uniaxial behavior of the material. Accordingly, the
uniaxial tests on the ½0	�8 specimens were used for the calibration
of the 6 parameters required to describe the inelastic behavior in

tension and compression. The parameters sð12Þ0 ; cð12Þ0 ; kð12Þbt ; kð12Þbc ; at12

and ac12 were calibrated in such a way that: (1) the predicted
strength matched that from the ½0	�8 coupon tests, for both tension
and compression; (2) the predicted size effect in strength matched
the test data (as shown in Section 4.3.3).

The single material point simulations were conducted with
reduced integration on one shell element of size he = 2 mm. The
calibrated parameters are presented in Table 3. It should be noted
that, even if the exponents at12 and ac12 might have different val-
ues, an excellent agreement with experimental data was obtained
setting at12 ¼ ac12 ¼ 3=4.

Following the material point calibration, a verification was per-
formed with a coupon level simulation. For the uniaxial tensile test
coupon, the dimensions were 100 mm � 40 mm � 1.9 mm, and for
the compressive test they were 100 mm � 40 mm � 1.9 mm, in
accordance with the ASTM standards [58,59]. The finite element
models for both coupons were meshed with four-noded shell ele-
ments of size 2 mm.

The results for the coupon simulation are shown in (Figs. 7a and
b). As expected, despite a stable post peak at the material point
level, a sudden dynamic failure of the coupon is observed at the
peak load. This can be seen as the vertical drop of load induced
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by snap-back instability. Both figures show excellent agreement
with experiments under tension as well as compression.
4.2.2. Calibration: mode 4
The behavior of the material under off-axis uniaxial loading is

highly dominated by the matrix, in particular, by its in-plane shear
response. In this configuration, mode 4 is predominant so these
tests can be used for its calibration. The mode 4 parameters

sð4Þ0 ; cð4Þ0 ; kð4Þat ; k
ð4Þ
ac ; k

ð4Þ
bt ; k

ð4Þ
bc and p were calibrated at material point

level, to match accurately the pre-peak non-linearity and the peak
load from the [45]8 coupon. The fracture energy in this configura-
tion was not known. Thus, a conservative value of about 50 N/mm

was assumed and the parameters kð4Þat ; k
ð4Þ
ac ; k

ð4Þ
bt ; k

ð4Þ
bc regulating the

post-peak response were calibrated accordingly.
In the absence of experimental data, the same set of values used

in tension was used to calibrate the compressive response. It is
worth mentioning, however, that the model does have the capabil-
ity to describe a different behavior in tension and compression
under off-axis loading, a useful feature to describe the shear
response of nonsymmetric textile composites.

Following the material point calibration, coupon level simula-
tions were conducted for verification using a 2 mm mesh. The cou-
pon dimensions, in accordance with the ASTM standards, were
100 mm � 40 mm � 1.9 mm.

Fig. 7c shows the specimen load–displacement curves. It is seen
that the shear response is very well matched by the model, includ-
ing the pre-peak non-linearity caused by constrained matrix
microcracking. An instability is observed at the peak load, mani-
fested as a vertical drop of load to zero, which is indicative of a
snap-back. The resulting calibrated values are shown in Table 3.

It is worth mentioning here again that the results in the 0	 con-
figuration were unaffected by the adjustment of the mode 4
parameters. This means that the model calibration can in general
follow a clear sequence, avoiding the complication of an iterative
procedure.

4.2.3. Calibration: mode 3 and mode 5
As pointed out in Sections 2.4.4 and 2.4.6, mode 3 and mode 5

are not expected to reach their inelastic boundaries as, in most
practical cases, the material is considered to be almost in plane
stress condition. Accordingly, in the absence of experiments to
fully characterize these two modes accurately, their inelastic
boundary can be just approximated. The parameters for mode 3
were estimated from [56,57] such that the out-of-plane uniaxial
elastic properties and strength match the one of a pure epoxy
matrix. Mode 5 parameters were assumed to have the same values
as for mode 4. The calibrated parameters are shown in Table 4.

4.3. Verification and validation

4.3.1. Uniaxial tests on Q.I. laminates
Subsequently to the parameter calibration, predictions were

carried out to validate the model. The tests used for this purpose
were uniaxial tests on coupons with a quasi-isotropic lay-up,
½0	=45	=� 45	=90	]s, for both tension and compression. The cou-
pon dimensions were 100 mm � 40 mm � 1.9 mm in tension and
100 mm � 40 mm � 1.9 mm in compression, in accordance with
the ASTM standards. Finite element models of the coupons were
built and meshed with layered shell elements of size 2 mm, 3
Gauss points being assigned to each layer.

The comparison between experimental and predicted load–dis-
placement curves is plotted in (Figs. 8a and b). In both cases, the
agreement in the initial slope and strength is extremely good. For
the tensile tests, the predicted strength is slightly on the lower
side. This may be attributed to the fact that the mean strength
measured from the 0	 configuration tensile tests, used in calibra-
tion, had itself a significant scatter. The prediction of the tensile
strength of the QI coupon rests heavily on this calibration. The rea-
son is that the first layer to experience failure is indeed the layer
oriented along the loading axis since the strain at failure for this
orientation is low. The agreement for the compression case is
excellent.

It worth mentioning here again that these results were obtained
without changing any of the parameters calibrated before. The
excellent agreement with experimental data serves as firm valida-
tion of the theory.

4.3.2. Biaxial failure envelopes
In order to asses the capability of the model to capture the

multi-axial behavior of the composite, the experimental multi-
axial failure surfaces reported in [67,69] were considered. It is
worth mentioning here that the material system studied in these
references is a plain weave composite, different from the twill
2 � 2 composite used to calibrate the model. Accordingly, the com-
parison between model predictions and the experimental data has
to be considered as qualitative only.

Fig. 9a shows the experimental data by Owen and Griffiths [67]
on the failure under normal biaxial loading of a system composed
by a polyester matrix reinforced by a glass woven fabric. In order to
compare these results with the calibrated model, the failure
stresses are normalized against the respective uniaxial strengths
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r0
i with i ¼ 2;3. As can be noted, the model shows an excellent

agreement with experimental data, a remarkable result consider-
ing that the spectral stiffness microplane model does not require
any additional parameter to seize the multi-axial behavior of the
material. As a reference, the Tsai–Wu failure envelope [68],
calibrated using only the uniaxial strengths in direction 2 and 3,
is also plotted. As can be seen, the predictions from the microplane
model and the Tsai–Wu criterion are very similar, with the
microplane model being slightly more accurate especially in the
II quadrant.

The behavior of the material under tension–torsional loading is
represented in Fig. 9b which reports the experimental data by Fujii
et al. [69] on tubes made of a polyester matrix reinforced by a glass
plain woven fabric. It can be seen that the model compares satis-
factorily with the experimental data even if it tends to slightly
overpredict the resistance to failure. The figure also shows the
prediction provided by the Tsai–Wu criterion calibrated only with
uniaxial data.

4.3.3. Size effect tests
The fracture energy that was indirectly measured from size

effect tests was incorporated in the model by calibrating the mate-
rial point response. In-lieu of the crack band model, the calibration
satisfies the condition that the area under the stress–strain curve
equals the fracture energy per unit volume (Fig. 10b). However,
this does not guarantee that the model will be able to predict the
right size effect in structural strength. This is because, for lab-
scale structures of quasibrittle materials, the fracture process zone
(FPZ) might not have reached its full size when the structure
reached its peak load. Therefore, as was shown by Cusatis et al.
[70], the peak load is governed by not only the numerical value
of the fracture energy, but also by the shape of the softening law.
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Thus, checking the predicted size effect is an important verification
of the damage formulation. Material failure theories that are based
purely on strength such as e.g. Tsai–Wu [68] cannot make this pre-
diction. This aspect will be considered in detail in a separate forth-
coming article [61]. Here, only the comparison between the
predicted size effect and the available test data is shown. Further,
the Size Effect Law (SEL) proposed by Bažant [21] fitting the exper-
imental data is reported as a reference.

Finite element models for all three SENT coupons were built and
uniaxial tensile simulations were performed to predict the peak
load. As noted in Section 4.1.1, the fracture propagation for these
specimens was modeled in the sense of the crack band model.
The elements in the crack band had a height he of 2 mm whereas
the size in the direction of crack growth was 0.2 mm to capture
correctly the stress profile in the ligament. Fig. 10a shows, for
the coupons of different size, a comparison of the predicted and
measured strengths, defined as rN ¼ P=tD with P ¼maximum
load, t ¼ thickness and D ¼width of the specimen. The calibrated
material point stress–strain curve, instead, is depicted in Fig. 10b.
It can be seen that, indeed, the model predicts the correct size
effect. It should be noted that the specific assumed form of the
fiber softening is instrumental in this prediction. Furthermore,
using the size effect fitting, the total fracture energy, GF , estimated
from the modeling predictions was 88.4 N/mm, which agrees very
well with the value of the initial fracture energy, Gf , estimated
from Size Effect Law (�74 N/mm [61]). In the absence of
experimental data, a similar value was assumed in compression.

The capability of capturing intra-laminar size effect of textile
composites is key for safe damage tolerance design across various
engineering applications. This is definitively a feature of the
spectral stiffness microplane model as the excellent agreement
with experiments showed.
5. Application to crushing of composite tubes: results and
discussion

Thanks to their outstanding energy absorption capability, tex-
tile composites are often used as substitute of steel and aluminium
to enhance crashworthiness of structural components. However, in
order to fully exploit the potential of these materials, material
models to be used as design tools are key. For this reason, the pre-
dictive capability of the spectral stiffness microplane model was
challenged to predict the energy absorbed during the impact of
composite crash cans. Fig. 11c shows the geometry of the structure
under study consisting of a hat section tube and a reinforcing plate
glued together by a toughened epoxy glue. Two different lay-up
configurations were studied, namely:

1. hat section tube: ½0	�11, plate: ½0	�8;
2. hat section tube and plate: ½0	=90	=45	=� 45	=0	=90	=

0	=� 45	=45	=90	=0	�;

Following the test conditions described in Section 3.4, the crush
cans were modeled in Abaqus Explicit [62] using a mesh of trian-
gular shell elements of 2 mm. All the degrees of freedom of the
nodes at the bottom section were fixed while a predefined velocity
field of 4.6 m/s was prescribed to the impacting mass of 74.4 kg
consisting of rigid shell elements. The general contact algorithm
provided by Abaqus Explicit [62] was used while element deletion
was adopted to avoid excessive element distortion during the sim-
ulation. The elements were deleted as soon as the dissipated
energy reached 99% of fracture energy or if the magnitude of the
maximum or minimum principal strains reached 0.45.
The comparison between experimental and numerical results
for case (1) and (2) is shown in (Figs. 11a and b) in terms of reac-
tion force on the plate versus time while Fig. 11d shows the typical
predicted fracturing pattern for case (1). As can be noted, a satis-
factory agreement is found for both cases. As shown in Fig. 11a
for case (1), the predicted plateau load, i.e. the reaction force on
the plate once the crushing process is stabilized, compares very
well with the experimental value: 33.7 kN vs 35.6 kN. However,
not the same accuracy is provided for the time required to stop
the mass, which is slightly overpredicted. This is not surprising
since, as can be noted from Fig. 11a the reaction force at the early
stages of the simulation is underpredicted. This might be an arti-
fact of element deletion in the first stages of contact between the
plate and the crush can and it is not considered here related to
the material model. This was confirmed by the fact that running
the same simulation with different material models provided the
same problem in the early stages of the simulation. It is worth
mentioning here that, during the tests, only 1/4 of the crush can
was crashed, being the initial velocity not high enough. With an
higher initial velocity, the prediction of the model in terms of time
to stop the impacting mass would have been far more accurate.
This because the extent of the region in which progressive stable
crushing was present (predicted by the model with an error of
about 5%) would have been much larger.

Similarly, (Fig. 11b) shows the results for case (2). In this config-
uration, several layers of the material were loaded off-axis dissi-
pating energy by extensive matrix microcracking before the
onset of the first intra-laminar cracks. This damage mechanism is
supposed to provide extra energy dissipation compared to case
(1) and, as a matter of facts, the experimental plateau load was
in this case higher: 41.0 kN. Thanks to the excellent capability of
capturing matrix microcracking, as was shown in the previous sec-
tions, the spectral stiffness microplane model was able to predict
this increased force with a value of 42.6 kN. This proves that the
model can be used as design tool to find the optimum lay-up con-
figuration to maximize energy dissipation. It should also be noted
that, in this case, also the total time to stop the impacting mass was
predicted with very high accuracy. This may be in part due to the
fact that the initial underprediction of the reaction force in the
early stages of simulation was compensated by a slightly overpre-
dicted plateau force.

It should be highlighted here that the results shown in
(Figs. 11a–d) represent a pure prediction based on the calibration
and validation done through uniaxial tests as well as size effect
tests only. No adjustment of any of the parameters of the model
was done, making the results shown even more remarkable. This
achievement was made possible by the accurate modeling of the
main damaging mechanisms such as e.g. matrix microcraking
and, most importantly, by the correct modeling of intra-laminar
cracking through the introduction in the material model of a char-
acteristic length scale. The latter mechanism of energy dissipation
seems to be the most important for the range of impact velocities
considered in the present work, in which the maximum strain rate
is not supposed to be higher than 20 s�1. As reported from exper-
iments, delamination seemed to be rather limited.

6. Conclusions

This contribution proposes a theoretical framework, called
‘‘Spectral Stiffness Microplane Model”, to simulate the orthotropic
stiffness, pre-peak nonlinearity, failure envelopes, and the post-
peak softening and fracture of textile composites. Based on the
results presented in this study, the following conclusions can be
formulated:
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1. The microplane formulation with constitutive laws defined on
planes of several orientations within the mesostructure allows
a sound and physically-based description of the damage mech-
anisms occurring in textile composites whereas the spectral
decomposition of the microplane strains and stresses provides
a rigorous generalization of the formulation to anisotropy;

2. Each eigenmode can be easily associated to the mechanical
behavior of a particular constituent at the mesostructure and
to a particular type of deformation. This makes it easy to take
advantage of each eigenmode to define constitutive laws at
microplane level targeting different damaging and fracturing
mechanisms;

3. Applied to a carbon twill 2 � 2 composite, the model showed
excellent agreement with uniaxial tests in tension and com-
pression for various lay-ups. In particular, the model captured
the highly non-linear mechanical behavior under off-axis and
shear loading, which is typical of textile composites and is char-
acterized by diffuse subcritical microcracking of the polymer
matrix. This feature is of utmost importance in all situations
in which predicting energy absorption is key, such as in crash-
worthiness analyses;

4. Thanks to the use of microplanes representing the mesostruc-
ture of the material, the model captures the complex multi-
axial behavior of textile composites without the need of any
additional parameter;

5. Different from strength-based criteria abundant in the litera-
ture, the formulation is endowed with a characteristic length
through coupling with the crack band model. This ensures
objective numerical analysis of softening damage and prevents
spurious mesh sensitivity. Further, this is key to capture the
intra-laminar size effect, a salient feature of composite struc-
tures. This aspect, too often overlooked in the literature on com-
posites, is a determinant factor for damage tolerance design of
large composite structures;

6. Compared with experimental results on the axial progressive
crushing behavior of composite crush cans, the model provided
excellent predictions for all the lay-up configurations under
study. The reason is that the main damage mechanisms such
as matrix microcracking and longitudinal intra-laminar cracking
were captured correctly by the formulation;

7. The model is computationally efficient and capable of analyzing
the fracturing behavior of large composite structures, making it
a valuable design tool for crashworthiness applications. Further,
it has sufficient generality to allow extensions to composites
with more complex architectures, such as the hybrid woven
composites, and 2D or 3D woven or braided composites;

8. The presented model is currently implemented in the commer-
cial code MARS with the name ‘‘Woven Composite Lamina”.
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