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a b s t r a c t

The fiber bundle model is widely used in probabilistic modeling of various phenomena across different
engineering fields, from network analysis to earthquake statistics. In structural strength analysis, this
model is an essential part of extreme value statistics that governs the left tail of the cumulative
probability density function of strength. Based on previous nano-mechanical arguments, the cumulative
probability distribution function of strength of each fiber constituting the bundle is assumed to exhibit a
power-law left tail. Each fiber (or element) of the bundle is supposed to be subjected to the same relative
displacement (parallel coupling). The constitutive equations describing various fibers are assumed to be
related by a radial affinity while no restrictions are placed on their particular form. It is demonstrated
that, even under these most general assumptions, the power-law left tail is preserved in the bundle and
the tail exponent of the bundle is the sum of the exponents of the power-law tails of all the fibers. The
results have significant implications for the statistical modeling of strength of quasibrittle structures.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Since the pioneering work by Peirce [1] in the 1920s, the study
of fiber bundle models has attracted an increasing attention by the
research community. This is due to its proven effectiveness in the
analysis of various phenomena across different engineering fields
– from material science to earthquake statistics, or from network
to traffic modeling, just to mention a few [2–12].

Recently, Kim et al. [2] applied the fiber bundle to study the
overloading failures in power grids. The load transfer of broken
fibers or nodes through the edges or links of the underlying
network was assumed to be governed by the local load-sharing
(LLS) rule [13–16].

The same load-sharing rule was adopted by Chakrabarti [3] for
the study of (global) traffic jam in a city network of roads. In this
case, for some special distributions of traffic handling capacities of
the roads, the application of the fiber bundle model let the
analytical study of the critical behavior of the jamming transition.

On parallel tracks, Moreno et al. [4] applied the fiber bundle
model to study the complex aftershocks sequences which occur
after earthquakes. Each element, an asperity or barrier, was
supposed to break because of static fatigue, transferring its stress
according to a local load-sharing rule and then regenerate.

In material science, the fiber bundle was extensively used as a
tool for studying important phenomena such as fracture, fatigue,
creep or thermally induced failure of brittle, ductile and quasi-
brittle materials [5–12].

Particularly important for structural strength is the asymptotic
behavior of the fiber bundle because it governs the extreme value
statistics of strength of engineering structures. This is essential for
safe design of aircraft, bridges, dams, nuclear structures and ships,
as well as microelectronic components and medical implants,
since the tolerable failure probability is extremely low, typically
Pf r10�6.

An early rigorous study of the cumulative probability distribu-
tion function (cdf) of the strength and of some asymptotic proper-
ties of a fiber bundle with brittle elements (called fibers) was
carried out by Daniels [17]. He derived an exact recursive formula
for computing the cdf regardless of the particular type of cdf of
individual fibers. He also demonstrated that, for the limit case in
which the number of fibers approaches infinity, the cdf of strength
tends to the Gaussian (or normal) distribution regardless of the cdf
of individual brittle fibers. Later, this property was also demon-
strated by different approaches by Galambos [18], Smith [19],
Sornette [20] and Le et al. [21].

The left tail of the strength distribution for bundles of brittle
fibers was studied by Harlow et al. [22] within the framework of
set theory. In their work, it was proven in detail that the left tail of
the cdf of strength of a fiber bundle is a power-law tail if the
elements exhibit a left power-law tail, although this property was
already implied in the pioneering work of Fisher and Tippet [23],
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in terms of the stability postulate of extreme value statistics.
Furthermore, Harlow et al. showed that the tail exponents of
brittle fibers are additive, i.e., the exponent of the bundle tail is the
sum of the exponents of the power-law tails of all its brittle fibers.

For brittle fibers, the same result was derived by Bažant and
Pang [24] in a simpler way using the recursive formula proposed
by Daniels [17]. Further, in their paper, the authors demonstrated
the presence of a power-law left tail and the additivity of the
exponents for ductile fibers. Then they coupled the fiber bundle
model to the weakest-link model to describe the multi-scale
transition of strength from the nanoscale to the macroscale. They
also pioneered the analysis of the reach of power-law tail and
showed the reach decreases by one order of magnitude for each
element in the bundle. A similar behavior was later demonstrated
by Le et al. [21] for fibers characterized by a bilinear stress–strain
curve with a gradual post-peak softening.

All the previous analyses of the asymptotic behavior of bundle
strength relied on the assumption of a particular constitutive
behavior of its elements. In the present work, the constitutive
equations describing each fiber are merely assumed to be related
by radial affinity while no assumptions are made on their
particular form. The cdf of strength of each fiber constituting the
bundle is assumed to exhibit a power-law left tail.

It is demonstrated that the power-law left tail is preserved in
the bundle. Moreover, it is shown that the exponent is the sum of
the exponents of the power-law of each fiber.

2. Preliminary considerations

In the bundle model, after one element fails, the load gets
redistributed among the other elements. The total load reduces to
zero when all the elements break but the maximum load is
reached when only a certain fraction of the elements is subjected
to the failure load. The load redistribution after a fiber breaks
depends on the load-sharing rule. Various rules have been
assumed in the literature, such as the load-sharing by the nearest
neighbors of the failing element in the bundle [13–17,25,26].

In the present work, all the fibers are supposed to be subjected
to the same relative displacement (note that the more general case
of proportional displacements can be transformed to this case).
Accordingly, the load-sharing rule is fully determined by the
constitutive behavior of the fibers.

The constitutive equations, si ¼ f iðεiÞ, describing the stress–
strain law of each ith fiber are supposed to be related by the
following affinity:

s0 ¼s0f ðεÞ ð1Þ

si ¼ sif βi
s0

si
ε

� �
ði¼ 1…nbÞ ð2Þ

Accordingly, Eq. (1) represents a reference curve while Eq. (2)
describes the behavior of each fiber. The parameter si is the
strength of the ith fiber, βi is a positive constant and nb is the
total number of fibers in the bundle. Also, f ðεÞA ½0;1� and it is
assumed to have piecewise C1-continuity in the domain of
interest.

It is worth noting that when βi ¼ 1, Eqs. (1) and (2) provide a
family of curves related by a radial scaling transformation. In case
βi ¼si=s0, one gets a vertical scaling. A similar transformation was
successfully applied within the framework of the microplane
model for the scaling of functions characterizing the constitutive
properties of quasibrittle materials [27]. As an example, Fig. 1
shows a family of s�ε curves describing a material exhibiting a
post-peak softening behavior.

Based on the present assumptions, once the reference curve is
defined, each fiber is fully characterized by its strength, si, and its
strain at peak, εni . Note also that no assumptions are made on the
particular stress–strain behavior of each fiber. This will guaran-
tee the generality of the results demonstrated in the following
sections.

3. Analysis of the left tail of the strength cdf of the fiber
bundle

Let us study the tail of the cdf of strength of the fiber bundle
model. In contrast to [13–17,25,26], the fibers are supposed to be
subjected to the same relative displacement while the load is
redistributed within the bundle according to the stress–strain law
of each fiber. A surprisingly simple property is demonstrated for
power-law tails. The power-laws are always preserved and their
exponents are additive. Specifically, if the cdf of strength of each of
nb fibers in a bundle has a power-law tail of exponent pi
(i¼ 1…nb), then the cdf of bundle strength has also a power-law
tail and its exponent is p¼∑nb

i ¼ 1pi.
For a brittle bundle, this remarkable property was proven by

induction based on the set theory [22,28]. Later it was also proven
more simply by Bažant and Pang [24,29] by means of asymptotic
expansion of Daniel's [17] exact recursive equation for the strength
of cdf of bundles of increasing nb. For a plastic bundle, this
property was simply proven by induction using the joint prob-
ability theorem [24,29]. However, all the previous demonstrations
relied on the assumption of a particular stress–strain curve of each
element.

For the broad case of fibers with general constitutive behaviors,
an analytical proof of the tail exponent additivity has been lacking.
It is presented next assuming that each stress–strain curve can be
described by an affinity transformation.

3.1. Analytical demonstration

For convenience, the analysis will be initially restricted to two
fibers. Then, the demonstration will be extended to the general
case of a fiber bundle constituted by nb fibers.

Consider two fibers and let them be numbered such that
s1rs2. Let the only random variables be the peak strengths si

(i¼1,2) and the ratio s1=s2 while the reference strength s0 and

s
σi

βi=1

Aσi/σ0

Bσi/σ0

σ0

ε

A

B

Fig. 1. Example of radially affine stress–strain curves described by Eqs. (1) and (2).
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the constants β1 and β2 are considered as deterministic quantities
characterizing the transformation law.

According to Eqs. (1) and (2), the average stress in the bundle,
savg, can be written as

savg ¼
1
2
s1f β1

s0

s1
ε

� �
þs2f β2

s0

s2
ε

� �� �
ð3Þ

Now, introducing for convenience the change of variable
ε0 ¼s0=s1ε, the peak average stress of the bundle, sb, can be
written as follows:

sb ¼
1
2
s1f ðβ1ε0Þþs2f β2

s1

s2
ε0

� �� �
; ε0 ¼ εn ð4Þ

where εn is the strain corresponding to the maximum value of
average strength. It is worth noting that, due to the randomness of
si, εn is also a random variable. To show this, first suppose that εn is
located in a region where f ðεÞ has C1-continuity. Then the average
stress of the bundle, savg, will satisfy the condition ∂savg=∂ε0 ¼ 0.
This, in view of Eq. (4) leads to the following expression:

β1f
0ðβ1εnÞþβ2f

0 β2
s1

s2
εn

� �
¼ 0 ð5Þ

It is now clear that εn will be a function of the deterministic
quantities β1, β2 and also of the ratio s1=s2 which is a random
variable. Thus, the maximum average strength of the bundle,
Eq. (4), can be rewritten in the following form:

sb ¼
1
2
s1k

s1

s2

� �
þs2w

s1

s2

� �� �
ð6Þ

where kðs1=s2Þ and wðs1=s2Þ are two generic functions of the
random ratio s1=s2. It is important to note that Eq. (6) still holds
in the case that the maximum bundle strength is located at a
discontinuity point of the general function f ðε0Þ. As can be inferred
from Eq. (4), the only difference, should such a case occur, is that k
would be a constant.

Now, consider the case when the average bundle strength is
less than some prescribed value S:

1
2
s1k

s1

s2

� �
þs2w

s1

s2

� �� �
rS ð7Þ

In such a case, Eq. (7) describes a region Ω2ðSÞ in the plane ðs1;s2Þ
whose boundary is determined by the following curve Γ:

Γ : s1k
s1

s2

� �
þs2w

s1

s2

� �
¼ 2S ð8Þ

This can be written in parametric form as follows:

Γ :
t ¼s1

s2

s2½tkðtÞþwðtÞ� ¼ 2S

8<
: tA ½0;1� ð9Þ

which, upon rearranging and introducing the function

FðtÞ ¼ 2
tkðtÞþwðtÞ ð10Þ

can be rewritten in the following compact form:

Γ :
s1 ¼ StFðtÞ
s2 ¼ SFðtÞ

(
tA ½0;1� ð11Þ

This system of equations describes the boundary of the region
Ω2ðSÞ which is shown schematically in Fig. 2. Function F(t) is not
known a priori and depends on the particular family of the
constitutive equations considered. However, since F(t) need not
be determined for the following analysis, it suffices to note that,
after the parametrization, both s1 and s2 are expressed as the
product of S with a function that does not depend on S. The
importance of this result will be evident later.

According to Eq. (7), the strength of each fiber must lie in the
domain Ω2ðSÞ whose boundary is now described by Eq. (11). Since
the strengths of the two fibers are supposed to be independent
random variables, the joint probability theorem can be used to
express the cdf of the average bundle strength. This provides the
following integral equation:

G2ðSÞ ¼ 2
Z
Ω2ðSÞ

g1ðs1Þg2ðs2Þ ds1 ds2 ð12Þ

where giðsiÞ is the probability density function (pdf) of strength of
the ith element. This equation has general validity and describes
the probability of failure of the bundle for a given stress S.

To study the asymptotic behavior of the distribution, consider
the case when S is sufficiently small to guarantee that the strength
of each fiber would be within the left power-law tail region. The
cdf of strength of the ith element will then be described as
PiðsÞ ¼ ðs=b0Þpi . Then, Eq. (12) can be rewritten as follows:

G2ðSÞ ¼ 2
p1p2
bp1 þp2
0

Z
Ω2ðSÞ

sp1 �1
1 sp2 �1

2 ds1 ds2 ð13Þ

According to Eq. (11), the region Ω2ðSÞ can always be normalized
by S without affecting its shape if the transformation yi ¼ si=S is
applied. Accordingly, the integral in Eq. (13) can be expressed as

G2ðSÞ ¼ 2
Sp1 þp2p1p2
bp1 þp2
0

Z
Ω2ð1Þ

yp1 �1
1 yp2 �1

2 dy1 dy2 ¼ ASp1 þp2 ð14Þ

Fiber 1 strength, σ1 
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r 2
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L

Fig. 2. Schematic of (a) the region Ω2ðSÞ of feasible strengths for a fiber bundle composed of two elements and (b) the corresponding region Ω2ð1Þ of normalized strengths,
yi ¼ si=S.

M. Salviato, Z.P. Bažant / Probabilistic Engineering Mechanics 36 (2014) 1–7 3



Author's personal copy

where, for the previous considerations, A is a constant indepen-
dent on S. This proves that the cdf of bundle strength has a power-
law tail whose exponent is p1þp2.

By induction, the foregoing analysis can then be easily
extended to a bundle with nb fibers. In this case, the cdf of average
bundle strength can be written as

Gnb ðSÞ ¼ nb!S
p1 þp2⋯þpnb

Z
Ωnb

ð1Þ
∏
nb

i ¼ 1

piy
pi �1
i

bpi0

 !
dy1 dy2…dynb

ð15Þ

where the region of feasible strengths of all the fibers, Ωnb ðSÞ,
defines a nb-dimensional space. Ωnb ð1Þ represents the correspond-
ing region of normalized strengths, yi ¼si=S. Since the integral in
Eq. (15) does not depend on S, this proves the theory to apply for
fiber bundles of any size.

It is worth mentioning here again that S was assumed to be
sufficiently small to guarantee the probability of failure of all the
fibers to be within the left power-law tail region. This was done
because the asymptotic distribution of the bundle strength was of
interest. However, Eq. (15) can be numerically integrated to
compute Gnb ðSÞ for any strength distribution of the elements of
the bundle. Note that, for the case of brittle-elastic fibers, Eq. (15)
provides exactly the recursive equation derived by Daniels [17].
For the elastic-perfectly plastic case, Eq. (15) coincides with the
equation derived by Bažant and Pang [24]. These can both be
considered as particular cases of the present analysis.

It has been proven that the power-law tail is an indestruc-
tible property of the bundle provided that the individual fibers
exhibit a power-law tail. It has also been shown that the
exponent of the power law of the bundle is exactly the sum of
the exponents of all the fibers. It is worth mentioning that, for
elastic fibers, a similar conclusion was proved by Harlow et al.
[22] and Phoenix et al. [28] by using the set theory. The same
was also demonstrated by Bažant and Pang [24] for elastic-
perfectly plastic fibers, and later by Le et al. [21] for fibers
exhibiting a bilinear stress–strain curve with softening behavior.
However, all the demonstrations relied on the assumption of a
particular constitutive behavior.

This limitation has been overcome here. Since no assumptions
are made on the particular stress–strain curve, it has been proven
that the indestructibility of the power law tail and the additivity of
exponents are general properties of the fiber bundle model with
equal relative deformation, the affinity of the stress–strain laws of
the individual fibers being the only restriction.

3.2. Numerical computation of cumulative probability distribution of
bundle strength

To illuminate the results just proven, the strength of a fiber
bundle is now numerically computed according to Eq. (15) for an
increasing number of fibers. The stress–strain curve of each fiber is
supposed to be radially affine (β¼ 1) to the curve sketched in Fig. 1
which can be described by the following polynomial expression:

si ¼siðax5i þbx4i þcx3i þdx2i þexiþ f ÞHð6�xiÞ ð16Þ

where xi ¼ s0=six, si ¼ strength of the ith fiber, HðxÞ represents
the Heaviside function and a¼0.003, b¼ �0:050, c¼0.377,
d¼ �1:344, e¼1.966 and f¼0.021. Eq. (16) is chosen to represent
a material that exhibits gradual post-peak softening. This is, for
instance, the case for quasi-brittle materials, i.e., brittle materials
whose inhomogeneities are not negligible compared to the struc-
ture size (exemplified by concrete, fiber composites, or ceramics,
among many others).

For convenience, the strength of each fiber is supposed to
follow a Weibull distribution with Weibull modulus p¼ 2 and a
scale parameter b0 ¼ 1. This distribution is known to provide a far
left power-law tail. However, it should be noted that any cdf of
strength exhibiting a left power-law tail could have been assumed.

The numerically computed distribution of the fiber bundle
strength is revealed by the Weibull-scale plot in Fig. 3 with
increasing nb. Note that, in this scale, a straight line of slope m
represents a power-law tail with exponent m. As can be noted, for
all the fiber bundles considered, the cdf of strength reaches a
power-law tail represented by different straight lines. In agree-
ment with the present theory, the slope of each line is found to be
the sum of the exponents of the fibers constituting the bundle, i.e.,
p� nb.

For a higher probability of failure, the cdf of bundle strength
begins to deviate slightly from the straight line and approach a
different distribution. This behavior was shown for the first time
by Daniels [17] who proved that for brittle-elastic bundles the cdf
of strength approaches the Gaussian distribution for nb-1
regardless of the cdf of the individual brittle fibers. The same
result was later proven within a different framework in [18,20].
A similar conclusion was demonstrated by Bažant and Pang [24,29]
for elastic-perfectly plastic fibers. Later, this property was proven
for any fiber constitutive law and cdf of strength in [21].

Accordingly, it seems that the right part of the cdf can reasonably
be approximated by the Gaussian distribution for a sufficiently high
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Fig. 3. Strength cdf of fiber bundles with nb fibers in which each fiber has a Weibull distribution (Weibull modulus p ¼ 2). Stress–strain relations are radially affine and
described by Eq. (16). (a) Weibull plot for fiber bundles with increasing nb (a straight line of slope m represents a power law of exponent m); (b) strength cdf of the fiber
bundle plotted on Gaussian probability paper (deviation from straight line is a deviation from Gaussian cdf).
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number of fibers. This is shown in Fig. 3, where the probability
distribution of bundle strength is plotted in the normal (or Gaussian)
probability paper. Note that, upon increasing the number of fibers,
the distribution approaches a straight line and the approximation by
the Gaussian distribution becomes more and more accurate. Also
note that the rate of convergence depends on the particular
constitutive law of the elements. It was shown that the slowest
convergence, of the order of Oðn�1=3

b ðlog nbÞ2Þ, occurs for brittle
bundles [19]. The fastest convergence, of the order of Oðn�1=2

b Þ,
occurs for plastic bundles [24].

4. Implications for hierarchical modeling of structural
strength distribution

From atomistic scale arguments, it was shown in [21] that the
tail of the cdf of the strength of a nano-scale element must follow
a power-law with an exponent equal to 2. This nano-mechanical
basis replaces Freudenthal's hypothesis that the strength distribu-
tion is determined by the statistics of meso-scale material flaws
[30]. Upon careful examination it is found that, in Freudenthal's
argument, one set of hypotheses underlying Weibull distribution
on the material scale is replaced by another set of equally
unverified hypotheses about the statistics of flaws on the meso-
scale (in detail see [21,24]).

To relate the strength distributions of a nano-scale element and
of a RVE at the macro-scale, a statistical hierarchical model was
proposed (Fig. 4); [24,29]. The multi-scale transition relied on two
basic statistical approaches: the fiber bundle model and the chain
model (or weakest-link model). The idea was that, failing in one
link only, the weakest-link model statistically represents the
localization of failure within one scale. The fiber bundle model,
instead, statistically imposes the condition of compatibility
between one scale and its subscale. In other words, it represents
the condition that the deformations of several cracked material
sub-elements located along the crack path within the fracture
process zone must be compatible with the overall deformation of
this zone on the higher scale.

The power law tail arising from the nanoscale was shown to be
preserved within each scale transition in the RVE. Furthermore,
the exponent of the power-law tail was found to increase while

passing to higher scales until it reaches its limit value at the RVE
scale. These simple tail properties were proven for the particular
cases of brittle-elastic and ductile fibers [24], and also for fibers
exhibiting a bilinear stress–strain curve with post-peak softening
[21].

The present analysis extends the indestructibility of the power-
law tail and the additivity of tail exponents to the general case of
any fiber bundle model with equal fiber deformations, regardless
of the constitutive properties of the fibers. A natural consequence
is that the cdf of strength must always exhibit a power law tail.
The present analysis also extends to arbitrary constitutive law of
fibers another important result demonstrated in [21,24], namely
that the strength of one RVE must have a Gaussian distribution
transitioning to a power law in the tail of probability within the
range of 10�4–10�3:

P1ðsÞ ¼ 1�exp ð� 〈s〉m=bm0 Þ for sosgr ð17Þ

P1ðsÞ ¼ Pgrþ
rfffiffiffiffiffiffi
2π

p
δG

Z s

sgr

e�ðs0 �μGÞ2=2δ2G ds0 for sZsgr ð18Þ

Here 〈x〉¼maxðx;0Þ¼Macaulay brackets, μG and δG are the mean
and standard deviation of the Gaussian core if considered
extended to �1, b0 and m are the scale and shape parameters
of the Weibull tail, rf is a scaling parameter required to normalize
the grafted cdf such that P1ð1Þ ¼ 1, Pgr ¼ grafting probability
¼ 1�exp½�sm

gr=b
m
0 �. The continuity of the probability density

function at the grafting stress requires that: ðdP1=dsÞjsþ
gr
¼

ðdP1=dsÞjs�
gr

where P1 denotes the failure probability of one RVE.
Note that the RVE must here be defined as the smallest material

volume whose failure triggers the failure of the entire structure
and must not be confused with the RVE definition in classical
micro-mechanics of materials without softening damage [24,29].
Also note that we have in mind only failures under load control
conditions, and only the broad class of structures of positive
geometry, which are those that become unstable as soon as
macro-crack propagation initiates from one RVE.

The localization and inter-scale compatibility conditions are not
the only reason why the RVE must be modeled by a hierarchy of
series and parallel couplings [24,29]. Another reason, identified in
[24], is that the parallel coupling of two fibers shortens the

One RVE: Weakest link model:

1

2

N

σ σ

Fig. 4. (a) Hierarchical model representing one RVE; (b) weakest link model representing a structure of any size.
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probability reach of the power law-tail by about one order of
magnitude, and that extending a chain by a factor of 10 extends
the probability reach by about one order of magnitude. Thus, if the
RVE were modeled only by parallel couplings, the power-law tail
on one RVE would be so remote that the Weibull distribution and
scaling could never be observed on any real structure.

To give an idea of how the foregoing results can be applied to
strength statistics, some examples are presented next. Attention is
focused on the broad class of quasibrittle materials for which the
RVE size is not negligible compared to the structure dimensions.
In this case, the cdf of structural strength transitions from Gaussian
to Weibullian depending on the structure size and shape [21,24].

5. Examples of application of hierarchical model to cdf of
strength of quasibrittle structures

Attention is now focused on the broad class of structures
exhibiting the so-called positive geometry, i.e., structures that fail
under controlled load as soon as a macro-crack initiates from one
RVE. This implies that the structure is statistically equivalent to a
finite chain of RVEs coupled in series (Fig. 4). Then, according to
the joint probability theorem, the cdf of structural strength can be
derived from the statistics of one RVE, i.e., from Eqs. (17) and (18):

Pf ðsNÞ ¼ 1� ∏
N

i ¼ 1
f1�P1½〈sNsðxiÞ〉�g ð19Þ

where sN ¼ nominal strength of the structure, sðxÞ ¼ dimensionless
stress field such that sNsðxiÞ ¼maximum principal stress of the ith
RVE at the position xi, and N¼number of the statistical RVEs in the
structure.

Figs. 5a–c show an example of optimum fits of the strength
histograms of some engineering quasibrittle materials by means of
Eqs. (19) and (17) and (18).

Fig. 5a shows some strength histogram tests of Lanthanum-
glass-infiltrated alumina glass ceramics reported in [31]. This
material is very attractive for restorative dentistry due to its
aesthetics and bio-compatibility as well as its high strength and
fracture toughness. Alumina-glass composites consisting of dry-
pressed and pre-sintered α-Al2O3 with a medium grain size were
tested. All alumina were CAD/CAM machined into prisms with
dimension 3 �4 �45 mm before infiltration with 25% (by weight)

of glass. 27 four-point bending specimens were tested, under dry
conditions.

Another example of optimum fit of strength is provided in
Fig. 5b showing the data reported in [32] for a single Nicalon fiber
embedded in a silicon carbide matrix. This material is used as
fibrous reinforcement in many ceramic composites for high
temperature applications. In this case, the investigated specimens
consisted of approximately 45%, by volume, of Nicalon fibers in an
eight harness satin (8-HS) weave construction, with about 20%,
by volume, of CVI Sic matrix. Three-point bending fracture tough-
ness tests of chevron-notch specimens of approximate dimensions
of 5�5�50 mm were conducted. The direction of load applica-
tion was always perpendicular to the fiber laminae while the
strength distribution of a single fiber was determined from the
analysis of each fracture mirror.

The optimum fit of strength data reported in [33] for the broad
class of unidirectional glass-epoxy composite materials is also
shown in Fig. 5c. In this case, the specimens were 19 mm wide
�191 mm long with gauge length of 114 mm. Each analyzed
specimen consisted of eight unidirectional plies and 71 tests were
performed.

Despite the relatively low number of tested specimens,
Figs. 5a–c clearly show that the strength histograms plotted in
Weibull scale are not straight lines, as would be required by the
two-parameter Weibull distribution. In fact, the Weibull scale
histograms consist of two parts separated by a relatively abrupt
kink, the presence of which can be demonstrated only combining
the hierarchical and the weakest-link models [21,24]. As shown by
the solid curves, the grafted Gauss–Weibull distribution, Eq. (19)
and (Eqs. 17) and (18), gives a very good fit, considering the scatter
of the data for all the investigated quasibrittle materials. This is not
surprising since, according to the derivations in the preceding
sections, the main assumptions behind the Gauss–Weibull distribu-
tion coupled to the Finite Weakest-Link Theory can be applied to
any material, no matter its constitutive behavior. This has also been
extensively validated by fitting strength histograms of a great
variety of materials [21,24,29].

Finally, note that a three-parameter Weibull distribution is
physically unacceptable. By reverse scale transitions it would
imply a finite threshold for the activation energy controlled jumps
on the atomistic scale, which is impossible. Also, the three-
parameter Weibull distribution gives an incorrect size effect,
a fact typically overlooked. In detail, see [21,24].
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6. Conclusions

In the present work, the tail of the strength distribution of a
bundle is studied assuming an equal deformation rule. Based on
previous atomistic arguments, the distribution of strength of each
fiber constituting the bundle is considered to exhibit a power law
left-tail. Supposing that the constitutive equations describing each
fiber are related by an affinity, it is demonstrated that

1. the power-law left tail is preserved,
2. the tail exponent is the sum of the exponents of the power-law

tails of each fiber,
3. These asymptotic properties of the fiber bundle model have

general validity since no assumptions are made on the parti-
cular constitutive behavior of each fiber.

These results have significant implications for statistical modeling
of the strength of quasibrittle structures.
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