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a sensor system that can be mounted on a fixed wing UAS and integrated with other optical
sensors. A trade study was conducted that determined that a light detection sensor had a
strong possibility of success, but had to be developed using a light sensitive camera and a
filtration script. Signal to noise ratio (SNR) was determined to be the main quantifiable
metric for determining success, and initial feasibility calculations indicated that the in-
tended design would perform well. The system was then successfully prototyped for flight
testing. Several variables were measured including type of light source, weather conditions,
camera mount angle, and direct or indirect light. Flight tests were successfully conducted,
and post processing scripts were developed to flag images with light and determine SNR. It
was found that the system delivered a higher SNR under cloudy weather, gave a decreas-
ing SNR but increasing probability of detection by increasing mount angle and produced
a higher SNR with light sources shined at the ground as opposed to directly at the UAS.
Flight testing also determined the optimal exposure value of the system.
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Nomenclature

A Area (m2)

Ab Absolute Sensitivity Threshold

c Speed of Light (m/s2)

d Distance or Length (m)

D Temporal Dark Noise (e−)

EV Exposure Value

h Planck’s Constant (m2kg/s)

L Luminosity (W)

n Number of Pixels

Nr Electrical Noise (e−)

P Number of Photons

QE Quantum Efficiency

r Radius (m)

t Shutter Speed (s)

α albedo

η Luminous efficacy (lumen/W)

λ Wavelength (Hz)

θ Angle (rad)

Φv Luminous Flux (lumen)

beam Flashlight Beam

disp Dispersed

ext External to Camera/Lens body

emit Emitted

int Internal to Camera/Lens body

flash Flashlight Body

f, l Light Emitting Part of Flashlight

gc Ground Captured by Lens

gr Ground Recorded by Sensor

light Light Output from Flashlight

l Length

lens Camera Lens

moon Moon

ref Reference

sky A Moonless, Starlit Sky

sens Camera Sensor

shutter In the Duration of the Shutter Speed

UAS Unmanned Aerial System, with Camera Onboard

w Width

I. Introduction

A. Problem Definition

Poaching is a pressing issue in the world today. Poachers break laws and kill endangered animals, pushing
them ever-closer to extinction and reducing the Earth’s biodiversity, something that harms all of Earth’s
inhabitants. Elephants, for example, are a keystone species which means they impact dozens of other species
and the general environment around them, including humans. By continuing to allow poaching, keystone
species like elephants are becoming extinct which is doing irreversible damage to the Earth. Additionally,
profits from poaching are sometimes used to fund terrorist groups, a direct way poaching is causing harm to
humans.1

The black rhino population has been reduced by 97.6 percent since 1960, largely due to poaching. Annu-
ally, 30,000 to 38,000 elephants are killed for their ivory. At current poaching rates, iconic African wildlife
like elephants and rhinos could be extinct within twenty years.2 The tactics poachers use are often sadistic
in nature. For example, elephants will gather around an elephant that has died or is dying in a sort of death
ritual. Poachers take advantage of this and will kill or wound an elephant, wait for others to gather around
in sadness, and then kill more elephants.1 Animals in all shapes and sizes, from bears to manta rays, are
killed or abused by poachers to have parts of them sold for use in traditional medicines, meals, charms and as
decorations. There is no need to continue this senseless slaughter, and humans should have a responsibility
to stop it.

Poaching can happen as close as your backyard, or as far away as Siberia. However, Africa is a specific
area of concern due to large populations of vulnerable animals as well as huge areas that are difficult to
police. A sensible solution is the use of unmanned aerial systems (UAS) to survey large swaths of land.
These UAS systems typically carry an optical system (camera) and a machine learning algorithm to identify
poachers, and then report back to a base where park rangers or appropriate authorities can be alerted. This
poses many challenges in accurate identification, power requirements to sustain on board computing, and
the limitation of working during daylight hours.
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B. Literature Review

There are various groups working on implementation of a UAS for anti-poaching operations. One of
the earlier groups to begin this research used visual and thermal cameras on a UAS to monitor areas for
rhinoceros poaching activity. Their conclusion was that a UAS is effective ”as a tool for surveillance of
sensitive areas, for supporting field anti-poaching operations, as a deterrent tool for poachers and as a
complementary method for rhinoceros ecology research.”3 Air Shepard is another project whose purpose is
to utilize UAS to combat poaching. They operate in three separate countries is Southern Africa and utilize
high resolution and infrared cameras to detect poachers.4 Another effort that is currently utilizing UAS
for anti-poaching operations is a project that is funded by a $5 million grant from Google and the World
Wildlife Fund. Micro Aviation SA has produced a UAS called the BatHawk that is being operated for
poacher patrolling in national parks in several different countries. The UAS is operated by the company
UAV & Drone Solutions and it relies on thermal imagery for poacher detection. It has been moderately
successful in finding and deterring poachers in the protected areas where it is used. This effort has also
indentified several problems with poacher detection from a UAS relating to the probability of detection as
well as other practical issues.5

Many groups have investigated the usage of UAS for similar missions such as search6 and rescue,7 persis-
tent surveillance,8 wildfire detection,9 precision agriculture,10 and aerial mapping.11 For this project, one of
the practical issues is how best to deploy the UAS for anti-poaching operations. This concern has prompted
analyst groups such as Wildeas to study how best to integrate technological solutions into stopping poach-
ing.12 Another solution to practical issues is to develop machine learning algorithms to enable more reliable
detection of poachers during long flights. Work has been done by researchers at the University of Southern
California to develop machine learning algorithms which will be utilized by Air Shepard to fight poaching.13

These researchers are showing that machine learning can be a valuable tool that is ready to be deployed even
in areas with complex terrain.14 Their analysis of 180,000 individual poachers and animals in 40,000 images
provides a deployable tool to be used for traditional visual sensing methods, however there is still room to
improve detection probability through the use of additional, less traditional sensing techniques.13

Vulcan, Inc. aims to integrate a non-traditional imaging sensor on board a UAS to be used for anti-
poaching operations under conditions where it can function outside the norm and increase the probability of
detection while taking advantage of machine learning tools and avoiding other practical issues. With such
a broad problem there are virtually endless ways of approaching possible solutions. This is why an initial
trade study of various non-optical sensors was completed, considering magnetometers, radar systems, cell
phone detection, artificial light detection, and gunshot detection. Due to cost and precision considerations,
the decision was made to move forward with artificial light detection.

Traditional light detection methods make use of photodioides that return either ’on’ or ’off’. However, to
be able to pinpoint the location of the light source, as well as to detect light as dim as that which is expected
to be seen from above, a more sensitive method is necessary. Little work has been done to attempt to use a
low light imaging camera together with a processing algorithm solely to isolate and detect sources of light.
This project hopes to change that.

C. Aerospace Context

In the modern aerospace industry, UAS are becoming more and more important as a tool for a variety
of customers. A UAS can fulfill many versatile roles. They have applications ranging from military roles to
entertainment for hobbyists, and everything in-between. The demand for new development will only increase
in the future: ”The [UAS] market is expected to grow US $ 51.85 billion by 2025 from US $ 11.45 billion in
2016.”15 It is therefore vital that aerospace engineers and their employers are able to anticipate future needs
and prepare to develop solutions that fit customer demands. A UAS for nearly any application will need
on board sensor equipment to ensure it can fulfill its role. Additionally, any UAS that engineers develop
will need to undergo flight testing so any potential issues can be resolved and the UAS can be delivered to
customers with optimal performance.

D. Functional Requirements/Customer Specifications

The artificial light detection payload was designed to fulfill certain specifications set by Vulcan, Inc. Of
key concern were mass, power usage and cost. The maximum allowable mass was set to be below 1 kg. The
power usage should be sufficiently low as to not dramatically reduce the endurance of the final aircraft below
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5 hours. This both of these factors would allow the aircraft to stay aloft for sufficient time to efficiently
patrol large areas during its final use. Our budget was fixed at $4000 and could not be exceeded, so the
sensor payload needed needed to cost less than this to leave budget for other project expenses. In terms
of deliverables, Vulcan, Inc. wished to have a working prototype with sets of data from flight testing that
could be used to train machine learning algorithms for target detection.

E. Design Approach

With such a broad problem to tackle, the design approach required thought and planning in order to finish
the project on time. The first step in the process was to conduct a broad survey of the problem, learning
about the modus operandi of poachers to better understand ways of detecting them, as well as looking
into other past work and various sensing technologies. After this broad survey, several candidate sensing
technologies were identified and a trade study was conducted weighing the various options against each other.
After light detection was selected, team members conducted an in-depth feasibility study, including some
initial testing to verify the validity of artificial light detection as a strategy for poacher detection. Once the
in-depth feasibility analysis was complete, work began on both the physical integration of the payload as well
as its software infrastructure, while simultaneously conducting ground tests. These ground tests provided
direction for the final phase of the project, which was flight testing. These flight tests were completed in
order to further prove validity and provide Vulcan with the image database that they requested.

According to our research, there were had been no other investigations into artificial detection from a
UAS similar to our application. Thus, this was a novel project that required thought and testing in order
to ensure success. Ultimately, the success of this payload will be measured in poachers stopped and animals
saved, however as a testing metric its success will be measured on Signal-to-Noise Ratio (SNR) and the
ability for a human to clearly see a source of artificial light in the data outputs.

II. Design

A. Sensor Trade Study

A survey of sensors that may be suited to the application was completed, and several of those sensors
were selected for further in depth inquiry. The sensors chosen are listen in Fig. 1, along with comments and
numerical scores of various components. The numerical scores were obtained by comparing the values for
each sensor to known constraints to decide which would be best and worst, and fixing those at the two ends
of the spectrum, and then interpolating to find scores for all values between the extremes. Once scores for
individual components were found, these were combined into an overall feasibility score.

The total feasibility score for each sensor was found by weighting each component individually as shown
in Table 1. The percentage weight of each component was determined through a combination of customer
specifications and design requirements. The most important components to a sensor’s potential is the
sensitivity (range in which sensor is expected to perform accurately), precision (fidelity with which the
sensor can detect when under ideal operating conditions), and susceptibility to noise. For example, a
magnetometer can detect magnetic materials from very far away, but has a hard time distinguishing the
magnetic signature of a car versus magnetic minerals in the Earth below the car. Occurrence likelihood
describes how probable the case in which detection can be successful occurs. For example, gunshot detection
can be incredibly accurate, but is only successful if the UAS is within range of detection when the gunshot
occurs. Comparatively, LiDAR will always be able to detect people or vehicles when it is within range.
Occurrence likelihood is the only variable rated on a scale of one to three as opposed to one to ten, as there
was little distinction between what would yield a score of five or six.
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Fig. 1: A trade study of the most viable sensor options.

Table 1: Comparative weighting of trade study components to characterize final score.

Mass 10%

Price 5%

Precision 14%

Noise Susceptibility 14%

Power Usage 10%

Sensitivity 16%

Ease of Integration 7%

Durability 9%

Occurrence Likelihood 7%

Processing Power 8%

As shown in Fig. 1, the AVS Gunshot Detection has the highest total score. It was capable of detecting
gunshots or other loud sounds and determine the location of their origin with surprising accuracy. It appeared
to be a highly sensitive sensor with accurate enough precision to return the necessary results. However, the
price was prohibitive for the project, and so it was pulled out of the running. In the future it may be possible
to pursue development of a gunshot detection or sound event recognition system given a longer timescale
and larger budget. The Velodyne LiDAR Puck was also a strong contender, with high occurrence likelihood
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and precision, but a low sensitivity and high weight ultimately put it out of the running. The Echodyne
MESA-DAA had a very high range that piqued the interest of the project sponsors, however the time to
acquire the sensor was well outside of the project timescale. Thus, unfortunately this sensor could not be
pursued for this project. Magnetometers were deemed to be too inaccurate due to background noise. There
was also additional difficulty with magnetometers because of interference of the UAS motor, which can be
remedied by towing the magnetometer below the UAS. This style of operations is outside of the realm of
possibility for the planned flight vehicles and operating parameters, decisively putting magnetometers out
of the running. Millimeter wave sensors were found to be lacking in sensitivity, as with cell phone detection.
Artificial light detection presented some difficulty in that there were no sensors designed to detect light at far
distances. Instead of attempting to find an off the shelf sensor, the fabrication of a light detection sensor was
investigated. Evaluating light detection using a high contrast CMOS camera with data processing algorithms
yield a high precision sensor with low data processing requirements and a relatively low price. Based on the
completed trade study, artificial light detection was chosen as the sensor to move forward with.

B. Feasibility Analysis

The area covered by a flashlight shone at the ground can be approximated as an ellipse, as shown in Fig.
2. The distance to edges of the ellipse from the flashlight can be represented as hlight ∗ tan(θflash ± θbeam),
and the center as hlight ∗ tan(θflash). The width can then be represented as dcenter ∗ tan(θbeam).

Alight = πr1r2 = π(dcentertan(θbeam))(hlighttan(θflash + θbeam)− hlighttan(θflash)) (1)

Using Eqn. 1, the area of the illuminated ground can be found in terms of the angle of the flashlight
relative to the ground, the height of the flashlight above the ground, and the beam width of the flashlight.

Fig. 2: Diagram of flashlight directed at ground and reflected area.

The camera lens focuses photons from the external lens to the internal lens. Once past the internal lens,
the photons bounce off of the camera sensor and register as electrical impulses. Since the camera sensor is
rectangular, but the lens is circular, not all of the data collected from the lens will be used. Additionally, if
the sensor used is not a full sensor (1”), but a crop sensor, less of the captured data will be recorded. Figure
3 shows the path of light as it enters the camera. The ratio of data used from the internal lens is simply an
area ratio of Asensor/Aint,lens. The area of the sensor is defined as in the numerator of Eqn. 2, where dpixel
is the length of a pixel edge, and ntotal is the total number of pixels in the image.

Aint,used

Aint
=
d2pixelntotal

πr2int
(2)

The ratio of the useful area on the external lens can then be found by assuming that lens area is
proportional to the ratio of useful area.
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Fig. 3: A diagram of internal and external camera lenses.

Aext,used

Aext
=
Aint,used

Aint

Aext

Aint
=
d2pixelntotal(πr

2
ext)

2

(πr2int)
2

(3)

The total ground area captured by the lens can be calculated as a circle with a radius of the height of the
camera multiplied by the tangent of the field of view of the lens. The ground area recorded by the sensor
can then be calculated by using area captured by the lens and the ratio of useful area on the external lens,
as shown in Eqn. 4.

Agr =
Aext,used

Aext
Agc =

Aext,used

Aext
π(dlenstan(θlens))

2 (4)

Fig. 4: Ground area captured by sensor, shown from above (left) and the side (right)

The number of illuminated pixels (assuming a consistently bright illuminated area) can be calculated by
finding the ratio of illuminated area to total ground area captured by the sensor, and multiplying this by
the total number of pixels, as shown in Eqn. 5.

nlight =
Alight

Agr
ntotal (5)

Luminous flux is a measure of the total amount of visible light emitted from a source, while luminous
efficacy is a measure of how efficiently a source produces light. The power of a light source, or luminosity,
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is defined as the luminous flux per luminous efficacy. The photons emitted per second from a light source is
defined as shown in Eqn. 6.

Pemit =
L ∗ λ
h ∗ c

=
Φvλ

ηhc
(6)

The light reflected from the ground is simply the product of the albedo of the ground and the total
photons emitted. Assuming the photons disperse radially from a uniform reflected light source, the photons
per second per meters2 drop off with distance squared as shown in Eqn. 7.

Pdisp =
Pref

d2lens
=
Pemit ∗ α
d2lens

(7)

The photons incident on the relevant area of the lens can then be found by multiplying the useful area of
the external lens by the dispersed photons. Of these incident photons, the camera can only detect some finite
amount. The fraction of photons detected is defined as the quantum efficiency; multiplying the quantum
effiency by the shutter speed and the incident photons per second yields the photons detected during a
singular shutter, seen in Eqn. 8.

Pshutter = Pdisp ∗Aext,used ∗QE ∗ t (8)

Assuming that the photons incident on the sensor are concentrated in pixels corresponding to the illumi-
nated pixels, the photons detected per illuminated pixel can be found by dividing the pixels detected from
the light source by the number of illuminated pixels.

Similar to the light source, the power of the ambient light can be calculated using the luminosity of a
full moon and a moonless sky and the luminous efficacy of the sky. Using Eqn. 6 and multiplying by the
albdedo as discussed for the flashlight, the photons detected per pixel due to ambient light can be calculated.
Because ambient illumination is assumed to be constant across the ground, no significant photon dispersion
is expected.

The camera sensor will not only experience noise due to ambient light, but also due to dark current and
electrical noise. Dark current refers to variations that occur in pixel brightness when the picture has no
light sources (e.g. a picture taken with the lens cap on). Electrical noise is due to circuitry in the camera or
sensor that causes random variation in pixel brightness.

The signal to noise ratio (SNR) represents the strength of the detected light of the flashlight compared
to the noise in the photo, and can be used to predict likelihood of successful detection. The SNR is defined
in Eqn. 9. The electrical noise can be computed using the absolute sensitivity threshold of a camera (at
which the SNR is equal to 1), and solving for Nr.

SNR =
Pshutter

(PdispAext,used + α(Pmoon + Psky)) ∗QE ∗ t+Dt+N2
r

(9)

While signal to noise ratio gives a good indicator of whether detection will be possible, the relative size
of the signal to the noise also governs detection probability. Imperfections in sensors cause ’hot pixels’,
which are single pixels that appear white regardless of camera input. If the signal took up only one pixel
in the image, it would appear indistinguishable from these ’hot pixels’, which would significantly affect the
probability of detection. Figure 5 shows the predicted drop off of pixels as the UAS altitude is increased,
along with a 0.05% threshold, above which the signal is deemed to be easily detectable. The signal size
decreases below this threshold at approximately 375 m, at which point it may be detectable, but detection
probability starts to drop off as altitude increases from there. However, 375 m is far above anticipated
operating parameters, so signal size is unlikely to be a parameter that impacts detection probability.

C. Aperture and Shutter Speed Selection

Camera setting selection governs the amount of light that the camera sensor is exposed to, which correlates
to how bright an image appears. The amount of light that is incident on the camera sensor is referred to as
the image exposure. Exposure value (EV) is a scalar that represents the combination of camera parameters,
such that all combinations that result in the same exposure have the same EV. Two camera parameters are
generally considered when computing EV: aperture and shutter speed.
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Fig. 5: Predicted drop off of signal size with increased altitude.

Changing the aperture of the camera changes how wide the internal camera shutter opens. By using
a ’wide’ aperture, which corresponds to a low f-stop number (i.e. f/1.4 or f/2.8), the shutter has a wide
opening and so lets in a lot of light, making the overall image brighter. Comparatively, ’narrow’ apertures,
corresponding to a high f-stop (i.e. f/16 or f/22), will let in less light. Aperture also governs the depth of
field of an image, which refers to how deep the area that appears in focus is. A very narrow aperture will
have a large depth of field, where the entire image will appear in focus, and a wide aperture will have a
shallow depth of field, where the background and of the image will be blurred.

The shutter speed used to take an image describes how long the shutter remains open for. The longer
the shutter speed is, the more light it lets in, and the brighter the resultant image will be. A long shutter
speed lends itself more to taking images of stationary objects while stationary, while a short shutter speed is
better for taking images of fast moving objects or while the camera is moving quickly. Using a long shutter
speed to take an image of a fast moving object will result in considerable blur around the object.

Two pictures with the same EV can still look drastically different; as aperture and shutter speed each
individually change image characteristics that are not related to the image exposure. For example, and
image taken at f/1.4 and 1/1000 seconds will have a narrow depth of field, but any motion that is in the
field of focus will be sharp, while an image taken at f/11 and 1/15 seconds has the same exposure value, so
will be equally bright, but will have a wide depth of field, with any motion blurred.

In order to increase the signal to noise ratio as much as possible, any light source (signal) should be as
exposed as possible, while the background noise should be as dark as possible. However, the camera sensor is
not capable of measuring an infinite amount of light, the brightest a given pixel can be is pure white, which
represents a physical limit on the sensing capability of the camera; this cap is referred to as the saturation
limit. Two simulated images with varying EVs are shown in Figure 6. In both images, the signal has reached
the saturation limit, but the signal to noise ratio is much higher for the higher EV image. Increasing the
EV once the signal is fully saturated cannot increase the recorded magnitude of the signal, so only increases
the amount of noise in the image.

The EV must thus be carefully balanced to keep the signal fully saturated while keeping the noise as low
as possible. With an exposure value chosen, aperture and shutter speed can be deduced by tolerance for
blur and depth of field requirements.
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Fig. 6: A simulation of high and low exposure images.

III. Prototype

A. System Architecture

1. Overall System Architecture

A signal flow diagram between electronic components is displayed in Figure 7. The components in the
UAV are comprised of a Blackfly GigE monochrome camera, a Raspberry Pi 3, a strobe light, red, green, and
white LED lights, LiPo batteries, a portable powerbank, and a circuit built to connect all devices (excluding
the Raspberry Pi) to a single battery. The maximum amperage of 2.5A supplied to the Raspberry Pi was
not sustainable by the circuit wire due to the internal resistance of the wire, therefore, a power-bank with
a constant output of 12V , 2.5A was used to power the Raspberry Pi. All the electrical components used in
the system were bought off the shelf. A C++ script was run on the Raspberry Pi to capture images and
save them onto a 64Gb USB, which was removed after flight. The photos on the USB where then filtered
using a Matlab script designed to detect light sources in images.
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Fig. 7: A signal flow chart of the entire system.

2. Electronics

As each flight test requires a maximum of 12 minutes, a suitable LiPo Battery was chosen to last for
more than an hour. As shown in Figure 9, a OKR - T/3 Series Buck Converter was chosen to step down to
the required 6V to power the strobe light and the red, green, and white LEDs. Since the Raspberry Pi was
powered by the power-bank, the load on the buck converter, with an output capacity of 15W , was reduced.
The Buck converter features an input voltage range of 4.5 to 14 VDC , programmable output voltage from
0.591 to 6.0 VDC , and a conversion efficiency of 93%. The control pin was left open to enable the buck
converter. With the high efficiency of the Buck Converter, less power was consumed causing less heat to be
released compared to the linear regulator. The OKR - T/3 Series are not internally fused. Therefore, to
avoid injury to personnel or any expensive equipment, external fast-blow fuses were attached in-line with
the components.

Fig. 8: A complete schematic design of the circuit.
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(a) The aircraft with the camera mounted in the nose
behind a clear nose cone.

(b) A team member working on the interior connections
for the payload.

Fig. 9: Images of the aircraft and integrated payload during flight test operations.

3. Aircraft

In order to complete the necessary flight testing, the team acquired a fixed wing UAS from the University
of Washington Autonomous Flight Systems Laboratory (AFSL) and began the process of integrating the
payload for testing. The model of UAS was a Finwing Sabre, and the camera was integrated into the nose
where it was covered by a clear nose cone. In the nose cone it was possible to set the camera on several
different fixed mounts to test different mount angles in a fixed, forward facing view. Flight testing was
planned to occur mostly at night, so in order to comply with FAA regulations and to comply with FAA
night waiver stipulations (which will be discussed in a later section) the aircraft was equipped with standard
navigation lights. A strobe light was installed on the aft part of the aircraft, with standard solid red, green
and white lights on the wing tips and tail of the aircraft, positioned such that they were visible from all
angles. The lights were also visible for the minimum 3 statute miles as required by the FAA.

Fig. 10: The UAV with lights.
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4. GCS Components

The aircraft was operated directly via a pilot on the ground for take-off, and once in the air, control
was transferred to a ground control station which used the Ardu-Pilot Mission Planner software to control
the aircraft. The aircraft followed a series of pre-programmed waypoint to fly around a field at the test site
that allowed the camera to image test articles which had been set up throughout the field. In the sample
waypoint file below, test articles would have been set up at points 4, 8 and 12, and would have come into
view of the camera at different times during the approach to those points, depending on what angle the
camera was mounted at.

Fig. 11: A sample waypoint file used for flight control in Mission Planner software.

Mission planner was also used to auto-land the aircraft to minimize the already heightened risks of flight
testing in the middle of the night. Data logged during flight was used during post-processing of data to
determine the location of the aircraft at different times in order match the location of the aircraft with the
attached time stamps on images, thus enabling the determination of which images were taken where on the
flight path. This in turn showed what test article corresponded to each image.

5. Custom Payload

The camera and lens chosen for the payload were a Blackfly 2.0 MP Mono GigE PoE camera and
ThorLabs MVL35M1 fixed 35 mm lens. These were selected based on mass requirements, power consumption,
resolution, and budget. Fixed mounts were 3D printed and used to attach the camera to the nose of the
aircraft. The camera was connected to the Rasperry Pi running an Ubuntu Mate OS via an Ethernet cable,
and the camera interface was managed using the software FlyCapture 2, provided by Blackfly. In order to
run the collection scripts, manage images, and troubleshoot while the Raspberry Pi was inaccessible inside
the UAV, the Raspberry Pi was set up to broadcast an ad hoc network. This allowed remote desktop access
to the Raspberry Pi desktop with a laptop, which we used to initiate scripts at the start of all tests. The
image acquisition script was written in C++, and allowed configuration of several variables including the
desired number of images, delay between images, and the shutter speed of the camera. The mass of the final
payload including power sources was roughly 400 grams.
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Fig. 12: A 3D model of the camera and lens on a fixed mount.

B. Experimental Methods

Once the design of the payload was completed, it was necessary to begin testing the payload. In order to
accomplish this, three different types of testing were completed. First, feasibility testing was completed with
a Canon Rebel T5i, to ensure that the concept was viable before further development work or purchases
were made. Once this was finished, further developments were made to the design of the payload and the
camera, lens and other necessary equipment was procured. After the equipment was assembled, the group
began a series of ground tests to further explore feasibility and gauge expected results for the final series
of tests, the flight testing. Flight testing was the critical stage of testing, as this was the stage that would
determine the viability of the payload while in use for its true application. In each phase of testing, a variety
of performance metrics were used to evaluate performance and feasibility.

1. Performance Metrics

The assessment of payload performance followed two main avenues: human operator assessment and
Signal to Noise Ratio (SNR). Original criteria from the project sponsors required that a human should be
able to compare data from a field with a poacher and a field without a poacher and decisively recognize a
difference. In order to further quantify the data, signal to noise ratio was used to analyze the detectability of
light in images. A minimum SNR for detectability was set to be 5, with a signal size of at least 0.05% of total
pixels. The higher the signal to noise ratio is, the more detectable the signal will be. Signal to noise ratio
and signal size are impacted by mounting angle of the camera, flight altitude, and camera parameters. By
monitoring changes in the SNR across various tests, it was possible to evaluate the impact of these variable
parameters on payload performance. Study of these relationships enabled recommendations for how the
payload should be implemented to maximize performance.

Simulated images of data for SNR and signal size above, below, and near the performance threshold are
shown in Fig. 13. For varying SNR the signal size is kept constant at 0.5%, while for varying signal size the
SNR is kept constant at 5. Blur is also introduced to simulated data to better represent how actual results
may appear.
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Fig. 13: Simulated data near, above, and below the performance threshold for SNR and signal size.

2. Ground Testing

Ground tests were conducted in order to compare initial results to theoretically predicted values, establish
an initial idea surrounding the feasibility of the payload, to flush out issues with the payload and to give
an expectation of results for flight testing. Ground tests were conducted by reflecting different types of
flashlights off of a surface that was perpendicular to the ground. Blankets were used in order to establish
a better surface for light reflection, however the albedo of these blankets were higher than the expected
albedo of grassland or savanna, but this heightened albedo was accounted for as will be discussed in the
results section. Different light sources were used to illuminate the perpendicular surface and then images
were taken of the light sources from varying distances ranging from 80 meters to 180 meters. Ground tests
were also conducted on different nights to take advantage of different ambient lighting conditions, but due to
the proximity of the ground test site to the city of Seattle, light pollution minimized the impact of differing
ambient light conditions. This will be discussed in more detail in the results section. Camera settings were
also varied during ground tests.

3. Flight Testing

Flight testing was the final phase of testing that was completed. Flight tests were conducted in order to
gather data about the payload performance in an environment that simulated the environment it is meant
to be deployed. Flight tests were completed at UW Carnation UAS Test Site (UWCUTS) in Carnation,
Washington. This area was a large grassy field with plenty of space for flying the aircraft. Due to the
necessity of flying at night, flight tests were conducted under FAA Certificate of Waiver 1070W-2018-10815
which waived 14 CFR §107.29. In addition, before conducting flight tests, risk assessments16 were performed
to ensure safe operations17 at night were feasible.18

Initially, aircraft stability was tested with a dummy payload to ensure stable flight could be achieved
with the artificial light detection payload. These dummy flights were successful so testing proceeded with
the real payload. Tests were completed on four separate days. Flights with the final payload were made
during daylight initially to verify its functionality in the air, and then the team began conducting feasibility
testing.

The parameters varied for flight tests were ambient conditions, the test article, the angle the camera was
mounted, the altitude of the flight path and the shutter speed of the camera. Varied ambient conditions
and test articles allowed the team to test performance under different scenarios, helping establish a more
complete understanding of payload performance. Altering the angle the camera was mounted was done in
order to find a balance between seeing the largest area on the ground possible and ensuring that area was not
too large such that lights would not be seen clearly. Increasing the size of the viewed ground area increases
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the chance of detecting a light, so it was necessary to attempt to establish an optimum viewing angle to
maximize viewed ground area and keep the probability of detection high.

C. Results

1. Ground Testing

Ground tests were completed with sensor mounted on a tripod facing toward a reflective surface (with an
approximate albedo of 0.4). The surface remained fixed and the camera was moved away from it to distances
ranging from 80 m to 180 m. Tests were also completed on a cloudy night and a clear night, and with two
different camera apertures.

Fig. 14: A sample of results obtained while testing the sensor package on the ground.

Two different flashlights were used for testing, a 500 lumen and a 1000 lumen, both with beam widths
of approximately 50 degrees. Samples of test results are shown in Fig. 14. The reflective surface used for
ground testing was significantly smaller than the background behind it, leading to an oddly shaped light
in the data sets. This negatively impacts the visibility of the reflected light as distance is increased, as
the amount of pixels corresponding to the lit reflective surface is much smaller than the amount of pixels
corresponding to a flashlight shone towards the ground.
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Fig. 15: Signal to noise ratios found at varying distances, flashlight brightness, and camera aperture.

The SNR was found to be slightly less than 10% of the original predicted value of 151, as a saturation
cap was not originally taken into account during computations. In all data sets, the peak value was fully
saturated on the camera (a maximum value of 255). To address this, a saturation cap was introduced to
feasibility calculations, resulting in a new prediction of a SNR of approximately 10. The signal to noise ratio
found for each light source at varying exposures and distances is shown in Fig. 15. As expected, signal to
noise ratio was not found to vary significantly with distance, only the size of the reflected area (which does
not impact the signal to noise ratio).

Table 2: Average signal to noise ratio of each test.

SNR

500 lumen at f/1.4 12.38

500 lumen at f/2.8 13.62

1000 lumen at f/1.4 12.51

1000 lumen at f/2.8 13.17

Predicted, with saturation cap 12.04

The average SNR for each trial is also shown in Table 2. The difference between the predicted SNR
and the recorded SNR may be due to differences caused by a small, more reflective patch as opposed to
a reflection on a flat surface that is less reflective. Additionally, the theoretical computations are designed
assuming the the ground is relatively similar in albedo, not for a more reflective bright area. The average
is taken across all the distance trials, where the signal to noise ratio is found not to vary significantly. The
flashlight brightness does not appear to consistently change the signal to noise ratio, as with a fully saturated
peak, the two appear equally bright in pictures. This is also why there is a more significant different between
the two at the narrower aperture. Comparatively, narrowing the aperture does increase the signal to noise
ratio by 5 to 10 percent.
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Fig. 16: Noise magnitude and occurrence frequency compared between apertures; samples from 150 m test
with 500 lumen light source.

As shown in Fig. 16, the SNR is lower for wider apertures, because the larger aperture lets in more light
from the signal (which is already fully saturated), and more light from the noise (which increases the average
noise value, and thus, the SNR). This concept is discussed in section II, subsection C. Using an aperture
of f/1.4 was found to produce less noise but of a higher magnitude, while an aperture of f/2.8 produces
more noise of a lower magnitude. To increase overall probability of detection, the SNR should be as high as
possible, which requires keeping the noise as low as possible while keeping the signal fully saturated. Fine
tuning the exposure value while ground testing is difficult due to external factors like viewing the sky itself,
and testing near large amounts of light pollution, which increase the background noise. As such, further
attention was devoted to this during flight testing.

Shutter speed for the ground tests was taken at 1/100, though this will be decreased to 1/300 as a starting
point for flight testing. This change in shutter speed is projected to increase the SNR of resulting data by
fifteen percent.

Higher sky luminosity in Seattle (versus Botswana) is predicted to increase the SNR of results in Botswana
by 0.5%. A cloudy night is predicted to have a 10% higher SNR than a clear night, but due to reflected
light off of clouds, only a 0.3% difference was observed. Adjusting for albedo in Botswana versus albedo
of material used for ground test reflection decreases the SNR by 5%. Comparing the theoretical case in
Botswana, with a SNR of 14.5, to the average SNR from ground testing signal of approximately 12.9, the
signal to noise ratio in Botswana is expected to be approximately 12% higher than ground testing results.

2. Flight Testing

Flight tests were completed by mounting the sensor on a fixed angle mount inside the nose of a UAV
and flying a circuit over several known light sources. Before any night tests were conducted, several day
tests were completed to ensure functionality of all systems. During a day test, images were captured to
demonstrate the resolution of the camera. These images are shown in Figure 17. The SUV can be clearly
identified in the left image, but correctly identifying people is much more difficult. Thus, the camera is not
recommended for day time object classification due to lack of sufficient resolution.

The flight path for all testing is shown in Figure 18, along with samples of where images with light in
them were taken for one test. A 500 lumen flashlight was placed near waypoint 4 (denoted by a green marker
with a 4 on it), a 1000 lumen flashlight near waypoint 8, and car headlights near waypoint 12. In Figure 18
blue numbered circles denote images taken with light on them; so images one and two are of the 500 lumen
light source, image three is of the car headlights, four and five are of the 1000 lumen light source, and six
through nine are of the car headlights. A matrix of all tests completed is shown in Table 3.
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(a) A SUV imaged with a person standing next to it. (b) Three people imaged, two on a road and one in
the field.

Fig. 17: Daylight images taken to demonstrate camera resolution.

Fig. 18: A sample of the locations of images with light in them (indicated by number in blue circles), taken
during night test three.
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(a) Car headlight seen directly and
reflected.

(b) Flashlight reflected on ground. (c) Flashlight seen directed at cam-
era.

(d) Flashlight reflected on ground,
seen with long shutter speed.

(e) Two flashlight seen reflected on
the ground, 500 lumen and 1000
lumen brightness seen from left to
right; Test 7 image.

(f) Test image with no light im-
aged.

Fig. 19: Sampling of night testing images.

Table 3: Flight testing matrix.

Shutter Speed Mount Angle Weather Notes

Test 1 1/333 s 60 deg cloudy

Test 2 1/50 s 60 deg cloudy

Test 3 1/12.5 s 60 deg cloudy

Test 4 1/10 s 60 deg cloudy no car headlights

Test 5 1/5 s 60 deg cloudy no car headlights

Test 6 1/333 s 45 deg clear

Test 7 1/50 s 30 deg clear

Test 8 1/50 s 45 deg clear

Test 9 1/50 s 60 deg clear

Test 10 1/667 s 60 deg clear

Test 11 1/50 s 60 deg foggy

Test 12 1/5 s 60 deg cloudy flashlight directed at camera

Samples of images taken while flight testing are shown in Figure 19. In test images, car headlights are
consistently the easiest to identify. The reason for this is twofold: two lights next to each other are easy
to differentiate from a single light source, and because the lights are designed to illuminate as much road
as possible, they are angled almost parallel to the ground, casting a long strip of light across the field.
Comparing images a and b, it is clear that the car is casting a much larger beam than the flashlight, which
appears as a small triangle.
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Fig. 20: Plot demonstrating variation of signal to noise ratio with light directed at camera versus at the
ground.

Lights pointed directly at the camera were also consistently easy to identify, though that is not expected
to be a general operating condition. However, images with the flashlight directed at the camera have a
slightly lower signal to noise ratio than images with flashlights directed at the ground. This is due to the
increase in background noise caused by scattering photons from the flashlight directed at the camera that
serve to increase the background noise and make the image brighter on the whole. A plot of the signal to
noise ratio compared between the two cases is shown in Figure 20. The average signal to noise ratio for the
case with flashlight pointed at ground is almost 2 dB higher than the that of the case with the flashlight
pointed at the camera. However, much more variation in the SNR is found in images with the flashlight
pointed at the camera. The theoretical SNR for both cases was predicted to be 11.88 dB, as the signal is
expected to be fully saturated for both, and the noise is expected to be constant, as only environmental
and camera factors are considered in theoretical noise computations. The median SNR for the case where
the lights were aimed at the ground was recorded as 11.76 dB, a 1% discrepancy, and for the case where
the lights were aimed at the camera the median SNR was recorded as 9.54 dB, a 20% discrepancy. The
difference for the light pointed at the ground case is likely due to environmental factors (slightly darker or
brighter than predicted). The much larger difference for the light at the camera case is likely due to the
increased noise discussed above, as well as operator error in keeping the flashlight pointed directly at the
camera, leading to some images with it slightly skewed.

Increasing the shutter speed significantly to cause blurred images was also investigated as a detection
method, shown in Figure 19d, where the light source is seen blurred across the upper right corner. These
images also tended to have a lower signal to noise ratio due to higher background noise induced by the long
shutter speed. A plot of the signal to noise ratio compared between shutter speeds is shown in Figure 21.
The data is presented in a semi-log scale, because the shutter speeds tested were not linearly spaced. Two
data fits are shown; the first fits shutter speeds between 3 and 200 ms, and the second fits the origin and
the two lowest shutter speeds. This is done to demonstrate the sharp increase of SNR with shutter speed as
the light first becomes visible in the images (at incredibly low shutter speeds, no light is let in to the camera
sensor, so the image appears entirely black), as well as the slower decrease in SNR as the shutter speed
increases once the peak signal is already fully saturated. The intersection between these two fits suggests
that the SNR stops increasing with shutter speed at approximately 1/333 seconds, or 3 ms. All of the images
for night testing were taken at an aperture of f/1.4, so this suggests that an optimal EV for detection is
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approximately 9.35.

Fig. 21: Plot demonstrating variation of signal to noise ratio with shutter speed.

A comparison of theoretical SNR to recorded SNR for shutter speed trials can be found in Table 4. The
theoretical predictions perform well for the most part, but quickly lose accuracy as the shutter speed is
decreased past the point where the camera is no longer fully saturated by the signal. This indicates that the
camera may not be performing entirely to its provided specifications, or incorrect estimations of reflected
wavelength. For computations, the wavelength was assumed to be constant based on the output of the
flashlight, but in reality wavelength is impacted by the medium that the light is reflected off of. Outside of
the high error for the two low shutter speed values, the theoretical roughly matches the recorded. For most
higher shutter speeds, a relatively large spread of data is obtained, with the theoretical well inside of it.

Table 4: Camera shutter SNR theoretical comparison to recorded.

Shutter Speed Theoretical SNR (dB) Recorded SNR (dB) Discrepancy (%)

1/667 s 12.03 6.99 41.9

1/333 s 12.03 15.44 -28.3

1/50 s 12.01 12.55 -4.5

1/12.5 s 11.97 13.62 -13.8

1/10 s 11.95 11.39 4.7

1/5 s 11.88 11.76 1.0
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Fig. 22: Plot demonstrating variation of signal to noise ratio with camera mount angle.

Multiple camera mount angles were also tested to attempt to cover the largest ground area possible. The
mount angles (measured from the horizontal) tested were 30, 45, and 60 degrees. A plot of the resultant
signal to noise ratios is shown in Figure 22. The SNR was found to decrease approximately linearly with
angle, but the amount of images captured with light in them decreased similarly. That is to say, with smaller
mount angles, more ground is visible so the light appears smaller relative to it and is detected less often, but
has a higher signal to noise ratio when it is detected, while larger angles are more likely to detect dimmer
lights. The size of the camera footprint for each mount angle is shown in Table 5. Theoretical computations
did not take into account camera mount angle, so these results cannot be compared to expected values;
however, the results are in line with the SNR obtained from other trials.

Table 5: Ground footprint of area captured for each camera mount angle (measured from the horizon) at
operating altitude of 120 m.

Image Width Image Height Image Area

60 deg 38.58 m 32.25 m 1244.21 m2

45 deg 38.58 m 48.71 m 1879.23 m2

30 deg 38.58 m 99.45 m 3836.78 m2
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Fig. 23: Plot demonstrating variation of signal to noise ratio with clear and cloudy weather conditions.

The impact of weather on signal to noise ratio was also tested, and results are shown in Figure 23. The
median signal to noise ratio was found to be significantly higher for cloudy nights than for clear nights, which
is the opposite of results from ground testing, but the expected result nonetheless. The ground tests were
conducted much closer to large sources of light pollution, so there was much more ambient light reflecting off
of the bottom of the clouds in those cases. This would have lowered the SNR for cloudy cases compared to
the flight tests, where there was less ambient light to reflect off the bottom of the clouds, increasing the signal
to noise ratio. The predicted difference between clear and cloudy conditions was 2.0 dB; with a recorded
difference of 1.68, the 15% discrepancy is likely due to the presence of more light pollution in Washington
than in Botswana.

3. Image Classification and Probability of Detection

Probability of successful poacher detection is comprised of three separate components: getting an image
with a poacher in it, detecting the poacher in the image, and successfully classifying the image as one with
a poacher in it. Detecting the poacher is governed by SNR and signal noise, and has been discussed in
the previous section. Assuming that the sensor is operated at the ideal parameters derived in the previous
section, the signal to noise ratio is not a limiting factor in detection. Getting an image with a poacher in
it is governed mainly by the camera mount angle and the chosen flight path of the UAS. Because the flight
path and duration of the final payload is outside of the scope of this project, that component is neglected in
further analysis.

Successful classification of the image is dependent on an algorithm recognizing the light source within it
as something other than background noise. This classification was completed by finding the median pixel
brightness in an image, and searching for pixels a given amount brighter than the median brightness that are
grouped together. As the distribution of background noise in an image nominally follows a bell curve type
distribution, as shown in Figure 16, searching for values 2.5 median standard deviations above the median
returned all images with light sources in them for all test cases.

Directing the light at the camera did introduce some additional background noise to images that did not
have the light source directly imaged. Light from the flashlight, while not captured in a solid beam in the
camera, appeared to reflect off of the nose cone or internal camera mechanisms and caused a beam reflecting
across the middle of the image. This type of distortion could also be caused by any light sources reflecting
off of water or highly reflective surfaces outside of the area being imaged. For this reason, these images are
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considered to be false flags, and account for 3% of total images with light detected. An example of a false
positive is shown in Fig. 24, along with a positive and negative classification.

Fig. 24: Sample images of a negative, positive, and a false positive classification, shown from left to right.

The odds of an image having a poacher determined by the ground area covered by the camera at a given
mount angle. The total probability of detection also relies on the amount of images captured by the camera
(corresponding to the same fixed light sources), and these two metrics are used to compare the different
mount angles. The 45 degree and 30 degree mounts far outperformed the 60 degree mount by these metrics,
though the performance of the 45 and 30 degree mounts are similar. This indicates that the ideal mount
angle may be somewhere between these angles.

The probability of detection is simply the multiple of the probability of the three conditions required
for detection. The probability of getting an image with a poacher in it is simplified as the fraction of
ground area covered in an image to the the total ground imageable by the sensor package on the flight path.
In experimentation, all images were found to overlap at least 30% with the previous image, regardless of
camera mount angle, so the probability of the ground being imaged is 100%. The probability of successful
classification is defined as the probability of light detection minus the probability of false flags, or 97%. As
mentioned above, the SNR and signal size were found to be well above detection thresholds for all cases, to
the probability of successful detection of the poacher is taken to be 100%. This yields a total probability of
detection of 97 %.

IV. Conclusion

A light detection sensor payload was successfully developed and tested while meeting customer specifica-
tions. The total mass of the payload was approximately 400g, well bellow the maximum 1 kg requirement.
The payload was also easily integrated into a Fixed Wing Sabre plane, and would be presumably simple to
integrate into one of Vulcan Inc.’s unique aircraft. Finally the project cost approximately 3000 dollars, which
was substantially bellow the total budget. When flight tested, the sensor was convincingly able to identify
both the 500 and 1000 lumen flashlights as well as car headlights at 120m AGL under various conditions.

Data analysis produced several distinct observations based on the tested variables. The system success-
fully functioned under clear and cloudy skies, though the SNR was higher during cloudy conditions. It was
also found that as the camera mount angle increased SNR slightly decreased while probability of detection
increased. Additionally, light sources pointed at the ground had a higher probability of being detected than
those pointed directly at the UAS. SNR also increased with shutter speed until the sensor was fully satu-
rated, where it then began to decrease with increasing shutter speed. The optimal EV for detection was also
determined to be approximately 9.5.

With the success of this proof-of-concept, there a re a few next steps to take in order to finalize the
prototype. The first step consist of further optimizing and streamlining the system. Vulcan Inc. has
indicated that they will work to allow all image processing to be done on-board while the UAS is in flight,
and to be able to send real time pings to rangers when poachers are detected. This would also require
the development of a long range network connection so that the UAS could send notifications and data if
needed. These are all expected to be included in Vulcan Inc.’s upcoming V2 UAS, where this payload could
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be integrated.
Since the Pacific Northwest is not entirely representative of the intended operating conditions, additional

flight tests should be conducted in Botswana in order to ensure the system performs exactly as intended.
The most notable changing condition is light pollution, as the African savanna will have considerably less
artificial light than the greater Seattle area. Additionally, it is worth considering that the change in ground
material may affect albedo values and cause slight SNR variation.
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