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Abstract
A generalization of the universal outlier detection method of Westerweel and Scarano (2005
Universal outlier detection for PIV data Exp. Fluids 39 1096–100) has been made, allowing
the use of the above algorithm on both gridded (PIV) and non-gridded (PTV) data. The
changes include a different definition of neighbors based on Delaunay tessellation, a weighting
of neighbor velocities based on the distance from the point in question and an adaptive
tolerance to account for the different distances to neighbors. The new algorithm is tested on
flows varying from impinging jets to turbulent boundary layers and wakes to wingtip vortices,
both PIV and PTV. The residuals for these flows also show universality in their probability
density functions, similarly suggesting the use of a single threshold value to identify outliers.
Also the new algorithm is found to work with data up to about a 15% spurious vector content.

Keywords: PIV, PTV, outlier detection

1. Introduction

Many techniques have been proposed to deal with the spurious
vectors returned from PIV data using variable threshold
detection schemes such as in Shinneeb et al (2004) and Young
et al (2004). One of the most currently used methods is
the universal outlier detection algorithm of Westerweel and
Scarano (2005) which normalizes a residual of measured
velocities such that data points in high-gradient areas are
not considered outliers simply due to the variability of their
neighbors.

While there are many options for the detection of outliers
for PIV, PTV has relatively few methods for dealing with these
bad vectors. Pun et al (2007) used a bootstrapping method
to generate sets of data from which statistical probabilities
were calculated per vector and used to accurately determine
and replace outliers. Unfortunately, this method requires
significant computational time due to required iterative

processes. Another method, developed by Song et al
(1999), did not require interpolation of the velocity field or
a priori knowledge of the flow field, but required that the
flow satisfy the continuity equation (assuming incompressible
flow). While this method may work in some cases, it can be
quite problematic in the case of high Mach number flows and
three-dimensional flows.

The approach of the current work is to use the same
methodology as Westerweel and Scarano (2005) due to the
algorithm’s simple nature, easy application, computational
efficiency and universality. However, two problems arise
when considering the application of a normalized residual test
to the scattered data resulting from PTV. Firstly, the issue of
identifying neighbors must be solved; in the case of PIV, the
gridded data readily lend themselves to the identification of
neighbors. Secondly, the data resulting from PTV processing
are not equally spaced, and thus, should not have the same
influence in determining the viability of a vector in question.
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Both these problems can be solved with the adoption of a
newly defined neighborhood and a weighting of the velocities
within the neighborhood by their distance from the point in
question.

2. Algorithm

The simple, robust outlier detection technique of Westerweel
and Scarano (2005) is based on a threshold value of the
normalized residual fluctuation of the velocity of one data point
relative to its eight nearest neighbors. This residual also takes
into account the minimum possible residual by incorporating a
tolerance, possibly corresponding to the precision of the data.
This normalized residual is defined in equation (1):

r∗
0 = |U0 − Um|

rm + ε
, (1)

where U0 is the velocity measured at the data point in question,
Um is the median of its neighbors and rm is the median of
the residual of each neighbor’s value, Ui to Um. A slightly
expanded form of equation (1) is shown in equation (2) for
clarity:

r∗
0 = |U0 − med(Ui)|

med |Ui − med(Ui)| + ε
. (2)

While this technique works well for the gridded data of
PIV, it does not allow for the removal of spurious vectors from
the randomly distributed data of PTV. To that end, for the
present study, it was determined that the neighborhood must
be determined differently than the nearest eight data points.
Delaunay tessellation allows a convenient method of defining
neighbors as those data points which share triangles (Song
et al 1999). This results in neighborhoods of five to eight
neighbors on average, depending on the spatial arrangement
of the data. Similarly, Delaunay tessellation has been used to
interpolate vectors from an unstructured grid onto a structured
grid (Theunissen et al 2007).

Due to the random spacing of dada points, neighbors exist
at varying distances from the point in question. This gives rise
to the question of weighting the data points. A neighbor that
is very far away from the point in question should have less
effect as to whether it is deemed an outlier. For this reason, it
was decided that all the data points in the neighborhood should
be weighted by their distance from the point in question. To be
consistent, the velocity at the point in question must also be
weighted by a measure of distance, which in this case was
taken to be the median distance of the neighbors. To both
of these weights, a distance tolerance was added as in the
case of Westerweel and Scarano (2005). This tolerance will
be discussed below. Since the non-normalized fluctuation
was weighted by a distance, the median residual should also
be weighted by a distance measure (along with the tolerance
mentioned above). The resulting normalized fluctuation is
shown in equation (3):

r∗
0 =

∣∣ U0
med(di )+εa

− med
(

Ui

di+εa

)∣∣

med
∣∣ Ui

di+εa
− med

(
Ui

di+εa

)∣∣ + εa

, (3)

where, in this case, εa is the adaptive tolerance to be discussed
shortly and di is the distance from respective neighbors to the

point in question. It is now interesting to note what happens
if the distance of all the neighbors is the same, d. In this
case, the median of the distances is d, and the term di+εa can
be canceled from all the terms of equation (3) except for the
tolerance in the denominator, as shown in equation (4):

r∗
0 = |U0 − med(Ui)|

med|Ui − med(Ui)| + εa(d + εa)
. (4)

It is now clear that if εa(d + εa) = ε, where ε is the tolerance
from Westerweel and Scarano (2005), equation (4) becomes
identical to equation (2). Knowing that the tolerance has
been traditionally set to 0.1 pixel, the new tolerance can
be adaptively altered based on a median distance so that
εa(med(di) + εa) = 0.1. The value of 0.1 (Westerweel and
Scarano (2005)) for a tolerance is arbitrary but was found to
be a good value.

3. Results

3.1. Universality

In order to test its universality, this proposed technique has
been used on a variety of flows, both experimental and
synthetic, PIV and PTV. The following table lists the flows
and the sources of the data. As can be seen, a wide range of
flows has been tested (with the exception of supersonic and
microchannel flows), which should provide a good measure of
the applicability of this modified normalized residual method.

Testing to compare the results between PIV and PTV,
the data from the flow behind a circular cylinder at three
different Reynolds numbers (12 000, 18 000 and 24 000) were
processed both with PIV (a discrete window shifting method;
Westerweel et al 1997) and an in-house developed PTV
algorithm. Since the current technique can handle gridded and
non-gridded data, both resultant PIV and PTV velocity fields
were processed with the randomly spaced normalized residual
method. Figure 1 shows the fraction of vectors corresponding
to a given residual, both normalized and non-normalized. It is
clear in the non-normalized case that the PIV and PTV results
require different thresholds to properly determine outliers. In
addition, there is stratification visible in the different Reynolds
numbers of the PIV data, similar to that seen in Westerweel
and Scarano (2005). In the normalized case, however, the
PIV and PTV data collapse to a single curve, suggesting that
a threshold can be universally applied to both the PIV and
PTV data. As seen in Westerweel and Scarano (2005), there is
no apparent Reynolds number variation in the residual. This
shows that the current technique can be applied to both gridded
and non-gridded data, using the same threshold with equal
efficacy.

Figure 1 (right) shows that portions of the normalized
residual data from the PIV evaluation of the turbulent wake
data between values of 2 and 3 have a ‘bump’ profile. We
have identified that this is due to the processing of edge data,
which only have five neighbors rather than eight, and that
the neighborhood bias is not centered about the data point,
causing both the residual and the neighborhood fluctuation to
be affected similarly for all edge data points.
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Table 1. Flow types tested.

Flow description Source of data

Impinging jet VSJ Image #301 (Okamoto et al 2000)
Surface shear flow Dabiri (2003)
Turbulent boundary layer PIV Challenge 03 (Stanislas et al 2005)
Wing-tip vortex (Re = 28 000) Current work
Turbulent cylinder wake (Re = 12 000, 18 000, 24 000) Current work

Figure 1. Comparison of the residual (left) and normalized residual (right) of the turbulent cylinder wake flow. The dashed lines indicate
PIV data, while the solid lines indicate PTV data.

Figure 2. Normalized residual of all the flows tested. Note that the
data here are all PTV data and the plot is semi-logarithmic.

To truly test the universality among different flow types,
all the data listed in table 1 were processed with an in-
house PTV algorithm and then tested with the current outlier
detection algorithm. Figure 2 shows the fraction of vectors
(logarithmically) as a function of normalized residuals. As
in Westerweel and Scarano (2005), it is found that the data
collapses onto a single curve, to which a universal threshold
can be applied. In this work, a threshold of 2–4 was found to be
applicable depending on the user’s confidence in data accuracy.
The effect of changing the threshold on the percentage of
vectors to be considered outliers can be seen in figure 3,

Figure 3. Cumulative density functions for the turbulent cylinder
wake (Re = 18 000).

wherein the cumulative density function of the normalized
residual is shown for the cylinder wake data. As can be seen
from the figure, a threshold of 2 will result in about 8% of
the highest normalized residuals to be considered spurious;
similarly, a threshold of 4 will result in the 2% highest
normalized residuals to be considered spurious.

3.2. Necessity of distance weighting

It is possible to use the same method as mentioned in section 2
to define neighbors while not taking the distance weighting into
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Figure 4. The effect of distance weighting on the normalized residual. The non-weighted residual (left) does not collapse to a single curve,
thus not allowing a single threshold, while the weighted residual (right) does collapse.

account. This would essentially weight all neighboring vectors
equally and thus not allow one nearby vector to dominate the
validation. In practice, this approach generally works well,
providing comparable accuracy to the method described above.
However, in cases of very small characteristic flow scales
relative to mean inter-particle spacing, the ability to pick a
universal threshold is lost. To determine this, various synthetic
flows of grids of vortices of varying sizes were generated,
where the ratio of characteristic flow spatial wavelengths and
mean inter-particle spacings (i.e. the ratio between the distance
between vortices’ centers on a grid and the average distance
between particles) were represented by λ. Figure 4 depicts the
probability density function versus residual for various values
of λ.

It can be clearly seen that the effect of distance weighting
allows the use of a single threshold in the determination of
spurious vectors. In the unweighted case, higher values of λ

seem to be converging, but for very small-scale flows, the
probability density functions vary significantly. While an
unweighted neighborhood scheme can work in many cases,
the weighted algorithm allow for higher spatial gradients while
still maintaining universality.

3.3. Outlier detection capability and computational speed

While the universality of the proposed algorithm makes it
useful for a variety of flows, the actual necessity is to determine
which vectors are spurious. To test the capability of the new
algorithm, spurious vectors were added to known clean data
(synthetic images, and in the case of PIV, smoothed) from a
turbulent boundary layer (Stanislas et al 2005). The spurious
vectors were added in a random distribution about zero, with
lengths up to the maximum length present in the flow. The
following table shows the ability of the new algorithm to detect
spurious vectors (threshold was set to 2). PIV 1 and PTV 1
correspond to one image pair from the turbulent boundary
layer set and PIV 2 and PTV 2 correspond to another pair.

As shown in table 2, it is clear that the algorithm
offers decreased reliability when the amount of spurious data
increases to around 15%, although the aim should always be
to keep the spurious amount below 5%. While the reliability

Table 2. Detection capability on data with added outliers.

Added outliers PIV 1 PIV 2 PTV 1 PTV 2

0% 0.1% 0.4% 0.9% 0.6%
5% 5.0% 5.3% 5.7% 5.5%

10% 10.0% 10.0% 10.3% 9.9%
15% 14.4% 16.2% 14.2% 13.8%

of the current method seems good even at high spurious levels,
caution must be used. When outliers (sometimes several) are
adjacent, the results become unreliable due to the increase
in neighborhood fluctuation, along with the increase in non-
normalized residual. This could result in higher levels of
under-detection along with higher levels of over-detection,
reducing reliability. For this reason, the current method is not
properly suited to highly spurious data.

When there is concern of neighboring spurious vectors,
under-detection may occur due to the increase in neighborhood
fluctuation and an iterative approach can be used. By
iteratively running the outlier detection algorithm, some
spurious vectors will be removed on the first pass which will
decrease the neighborhood fluctuation for subsequent passes.
This approach can be taken until the number of spurious
vectors detected does not increase with further iterations. This
method will not solve the issue of over-detection, and should
only be used when very high spurious rates are expected.

4. Conclusion

A new method of outlier detection for both PTV and PIV
data has been developed based on the original algorithm
of Westerweel and Scarano (2005). The new algorithm is
computationally simple, requiring no interpolation or flow
modeling, and its implementation is not dependent upon a
priori knowledge of the flow. The current method takes two
to three times as long as the universal outlier detection method
of Westerweel and Scarano (2005), which is mainly due to
the time taken by the tessellation process. For example, a
512 × 512 pixel image was processed with 50% overlap 32 ×
32 pixel interrogation windows; the original universal outlier
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method took 0.3 s, while the current method required 0.85 s
(the processing was done on a Dell 8300 with a 2.6 GHz
Pentium 4). It was tested on several different flow cases,
ranging from an artificial impinging jet, to turbulent boundary
layers and wakes, to wing-tip vortices, both PIV and PTV. In
order to determine the neighborhood around a given data point,
Delaunay tessellation was used. The distances from individual
neighbors to the point in question were used as weights to
the velocities of the neighbors to account for the differing
inter-particle spacing. This method works equally well for
PIV and PTV up to a level of spurious data of about 15%,
far higher than should be encountered with good experimental
techniques. Beyond the 15% level, adjacent outliers affect one
another and are either not detected or cause correct vectors to
be misidentified as outliers. The method involves an adaptive
tolerance, which can be related to the tolerance of 0.1 pixel
given by Westerweel and Scarano (2005). A threshold of 2–4
for the normalized residual was found to work well for all
flows tested, although it is recommended that a threshold of 2
be used for any flow in which a large percentage of spurious
vectors are anticipated.
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