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Abstract
The paradigm set forth by Pereira et al (2000 Exp. Fluids 29 S78–84)
was an important milestone in capturing the optical geometry of a three-
dimensional defocusing digital particle image velocimetry (DDPIV) design
within a set of systematic equations. However, the opportunity to improve
upon their pseudo-three-dimensional conceptual implementation of the
two-dimensional equations exists by revisiting the derivations of these
equations and revising some of their assumptions in order to define a
modified set of equations for a true full-three-dimensional derivation. This
paper introduces this newly revised set of equations that will explicitly and
more accurately represent the three-dimensional DDPIV measurement
system. A three-dimensional geometric uncertainty model has also been
established through uncertainty analysis. Finally, a discussion of the
differences and benefits of the new system of equations is presented.

Keywords: defocusing digital particle image velocimetry, 3D-DDPIV,
cross-correlation analysis, velocimetry, imaging, visualization, fluid flow,
fluid diagnostics

(Some figures in this article are in colour only in the electronic version)

Nomenclature

γ radial distance from the optical axis to the lenses
ζ distance from an equilateral triangle’s centre to any one

of its vertices
apf side-length of the front face of the volume of interest

in the present derivation
apb side-length of the rear face of the volume of interest in

the present derivation
az thickness of the volume of interest in the present

derivation
b image separation
c side-length of the cubic domain of interest in the two-

dimensional derivation
D diameter of the lenses
d distance between the lenses
f focal length of the lenses

H the height of the reference plane within the observable
domain at the reference distance, L

h photosensor size
kX resolution requirement constant for �X, generally

defined to be 0.01 pixel
kZ resolution requirement constant for �Z, stipulated to

be greater than zero
l distance from the lenses to the CCD sensors along the

optical axis
L distance from the lens to the reference plane along the

optical axis
M optical magnification
X X-coordinate of a particle in the global coordinate

system
x0 x-coordinate of an equilateral triangle’s centre mapped

by the triple CCDs’ exposure of a particle in the local
CCD coordinate system
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xB x-coordinate of the base vertex of the image in the local
CCD coordinate system

xTL x-coordinate of the top left vertex of the image in the
local CCD coordinate system

xTR x-coordinate of the top right vertex of the image in the
local CCD coordinate system

Y Y-coordinate of a particle in the global coordinate
system

y0 y-coordinate of an equilateral triangle’s centre mapped
by the triple CCDs’ exposure of a particle in the local
CCD coordinate system

yB y-coordinate of the base vertex of the image in the local
coordinate system

yTL y-coordinate of the top left vertex of the image in the
local CCD coordinate system

yTR y-coordinate of the top right vertex of the image in the
local CCD coordinate system

Z Z-coordinate of a particle in the global coordinate
system

Za location of the front face of the domain of interest
relative to the lens plane

Zmin location of the intersection of the emerging rays from
the lenses on the optical axis

1. Introduction

Particle image velocimetry (PIV) is a significant quantitative
flow visualization technique used ubiquitously today due
to its advantageous non-penetrative technique of extracting
velocity data from a desired flow region. It was initially
photographically based (Adrian and Yao 1983), but has since
been implemented digitally (digital PIV or DPIV) using
charge-coupled device (CCD) cameras and digital data
acquisition and image processing systems (Willert and Gharib
1991, Westerweel 1993). DPIV has flourished and evolved,
producing countless variations of implementation such as
digital particle tracking velocimetry (DPTV) and stereo DPIV
(Adrian 1986, 1991, Arroyo and Greated 1991, Cowen and
Monismith 1997, Willert 1997, Raffel et al 1998, Webster et al
2001), and data processing such as window shifting, and image
deformation (Huang 1993a, 1993b, Westerweel et al 1997,
Nogueira et al 2002) that have produced significantly more
accurate results.

Emphasis in quantitative flow visualization of fluid
mechanics has currently shifted towards volumetric methods.
An evolution of DPTV is three-dimensional digital particle
tracking velocimetry (3DDPTV). In order to obtain
depth information, at least three CCD cameras must be
simultaneously synchronized for image acquisition, and
placed at optimum angles and distances about the test facility.
Triangulation schemes are utilized to locate tracer particles
upon image acquisition and follow individual particles to
obtain velocity vectors (Murai et al 1980, Virant and Dracos
1997). The disadvantage of this technique is a compromise
between spatial resolution and ambiguities in particle
identification due to large tracer particle densities that can only
be mitigated with the use of extra cameras. Furthermore, the
triangulation schemes employed require laborious calibration
of all the cameras (Murai et al 1980).

A second volumetric method is holographic particle image
velocimetry (HPIV) where holographic pictures are recorded

and DPIV methods are used to interrogate successive two-
dimensional planes within the hologram. Velocity fields in
the planes are then reconstructed into full three-dimensional
velocity fields (Barnheart et al 1994, Zimin et al 1993,
Meng and Hussain 1995, Zhang et al 1997). This method
has proven to be the most promising among the volumetric
methods, providing as many as 818 583 velocity vectors
distributed through a 97 × 97 × 87 equally spaced grid
(Zhang et al 1997). However, its complex optical set-up and
sensitivity to environmental disturbances makes the usage of
this technique awkward. Also, each hologram takes a total of
129 h (five 24 h days, or thirteen 10 h days) to completely
process using one processor of an SGI Power Challenger
(Zhang et al 1997), and this technique can only provide a
single snapshot of the flow.

The most recent three-dimensional method to be instituted
is the defocusing digital particle image velocimetry (DDPIV),
which is capable of minimizing the aforementioned limitations
(Pereira et al 2000). The foundation of this measurement
system was first established by Willert and Gharib (1992)
(herein referred to as WG). This technique utilizes a defocusing
or blurring concept to obtain information regarding a particle’s
position in space. This system, differing from the 3DDPTV
technique, has one axis common to all associated optics, and
uses three-dimensional spatial cross-correlation to obtain the
average shift of particles within a voxel (an interrogation
volume element). Velocity uncertainties are within 1% of the
maximum in the plane perpendicular to the optical axis, and 4
to 6% in the plane parallel to the optical axis. This technique
has already been used to map the bubbly flow field about a
propeller (Pereira et al 2000), and may potentially be used
to study transient phenomena and time-averaged statistical
behaviour due to the system’s ability to acquire sequences of
images.

In order to implement the DDPIV volumetric technique,
efforts must be made to characterize the geometry of the system
through mathematical expressions. A significant contribution
to the mathematical description of DDPIV has been pioneered
by Pereira et al (2000) (herein referred to as PGDM) and
expanded upon by Pereira and Gharib (2002) (herein referred
to as PG). The equations that have been derived are appropriate
only for a two-dimensional optical arrangement, and have
been subsequently used to describe a three-dimensional optical
arrangement. Hence, these equations do not accurately
describe the full three-dimensional nature of this measurement
method.

It is therefore the purpose of this paper to present a
set of modified equations that can properly describe the
DDPIV system in three dimensions. In section 2, the
principle of the DDPIV system will be revisited, and previous
implementations of this principle by PGDM and PG will
be reviewed. This will then set the foundation for which
the present full three-dimensional description of the DDPIV
will be presented and described in section 3. A geometric
uncertainty analysis for the full three-dimensional description
of the DDPIV is derived in section 4, where a comparative
foundation of the present DDPIV with PG will be established.
Finally, in section 5, a juxtaposition of the present derivation
with the previous derivations of PGDM and PG is discussed
in detail.
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(a)

(b)

Figure 1. (a) Defocusing concept graphically demonstrated: a standard imaging set-up with aperture on-axis; (b) defocusing set-up with
two off-axis apertures. Point A focuses from the reference plane onto the CCD plane; point B focuses behind the CCD plane at point B′′′,
leaving two slightly blurred images on the CCD plane (B′ and B′′) at a distance b apart; point C focuses further behind the CCD plane at
point C′′′, leaving two slightly larger blurred images on the CCD plane (C′ and C′′) at a larger distance b′ apart (adapted from Willert and
Gharib (1992) and Pereira and Gharib (2002)).

2. Defocusing digital particle image velocimetry:
previous geometric analysis and limitations

2.1. Principle

The principle behind the DDPIV system is best described by
using a two-dimensional representation of the imaging system
shown in figure 1. In figure 1(a), rays from a particle located at
A focus onto point A′ on the CCD plane. Rays from a particle
located at B (off the reference plane), while still travelling
through the aperture, focus away from the CCD plane onto
point C, leaving a blurred image, B′, on the CCD plane.
Note that in this configuration, it is not possible to obtain
information about a particle’s depth location.

However, by taking advantage of the blurring principle
just described, one can modify the aperture in order to obtain
full information about a particle’s position in space. In
figure 1(b), the aperture is replaced with two apertures that
are at off-axis locations. In this configuration, rays from a
particle located at A, though travelling through both apertures,
are still focused onto A′. Similarly, rays from point B focus
off the CCD plane, onto B′′′. However, because the apertures
are off-axis, while converging onto point B′′′, the rays leave
two blurred spots on the CCD plane, B′ and B′′, separated by
a distance b. If a particle located at B were to move farther
from the reference plane to C, rays from this particle would
focus off the CCD plane, onto C′′′, leaving two blurred spots

on the CCD plane, C′ and C′′, separated by a distance b′ that
is larger than b. Consequently, this geometry shows that the
particle image separation on the CCD plane gets larger as the
particle moves farther away from the reference plane, thus
providing a way to gauge the depth location. A particle’s
location orthogonal to the optical axis can also be determined
by gauging the displacement of the particle image centre from
the optical axis. In this manner, the location of a particle in
space can be fully determined.

2.2. Previous geometric analysis

As derived by WG and used by PGDM and PG, using the
two-dimensional diagrams shown in figure 1 and geometric
ray tracing, a particle’s position is shown to be

Y = −y0Z(L − f )

f L
= −y0Z

ML
, y0 = y ′ + y ′′

2
(1a)

X = −x0Z(L − f )

f L
= −x0Z

ML
, x0 = x ′ + x ′′

2
(1b)

Z = 1
1
L

+ Kb
, (1c)

K = 1

MLd
, b = Md

Z
(L − Z), M = f

L − f
,

(1d )
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Figure 2. Representation of a pseudo-three-dimensional defocusing optical layout with a cubic domain of interest as represented by PGDM
and PG (adapted from Pereira and Gharib (2002)).

where M is the geometric magnification, d is the distance
between the centres of the apertures, L is the distance from
the aperture plane to the reference plane, (X, Y, Z) are the
coordinates of a point in space not on the reference plane (i.e.
point B or point C), (x1

′, y1
′) and (x2

′, y2
′) are the blurred images

on the CCD plane (i.e. points B′ and B′′ or points C′ and C′′)
on the CCD plane and b is the separation distance between
the blurred images on the CCD plane. The sensitivity of this
system to detect changes in the depth location of a particle is
given by

∂b

∂Z
= − 1

KZ2
. (2)

While there are no bounds on this function, the region between
the lens and the reference plane demonstrates better sensitivity
(i.e. larger values of this function) than the region beyond the
reference plane, suggesting that this region should be used
to image the volume of interest. In addition, another way
to increase the system sensitivity is to minimize the gain
factor, K.

Further analysis by PG has identified the observable
domain by the DDPIV system, shown in light grey in figure 2.
While seen as a two-dimensional triangle in this figure, this
region is in fact a volume within which the DDPIV system is
able to image particles, and thereby obtain their positions in
space. On the Z-axis, this observable domain exists within the
reference plane located at L, and the apex of this triangular
region is located at Zmin. Furthermore, a design constraint
defined as the ‘domain of interest’ has been introduced that
defines the largest cubic domain of side c that can exist within
the observable domain. The location of Zmin, expressed as a
function of the dimension of the domain of interest c, is given
as

Zmin = d(L − c)

d + c
. (3)

As pointed out by WG, using a two-pinhole mask to image
densely seeded flows presented the difficulty of uniquely
matching particle image pairs, which resulted in ambiguous
data. To overcome this ambiguity problem, a three-pinhole
mask, where the pinholes were placed at the vertices of an
equilateral triangle, was suggested and used (see figure 3).
With this configuration, the CCD sensor was triply exposed,
such that the pinhole exposures were also located at the

Figure 3. DDPIV using a three-pinhole mask (adapted from Pereira
et al (2000)).

vertices of an equilateral triangle. While the three-pinhole
mask did overcome the ambiguity problem, there were
still two other problems that remained. First, since each
particle now produced triple exposures onto the CCD sensor,
imaging heavily seeded flows resulted in heavily overlapped
particle images, hence making particle identification extremely
difficult. Second, for optimal experimental configurations, the
pinhole separations were required to be of the order of the
dimension of the domain of interest, c. This necessitated that
the lens also be at least of the same dimension, thereby posing
a problem as obtaining custom-made large lenses could be
quite costly.

The solution was to redesign the DDPIV camera to use
three separate imaging systems, each located at a specific
distance from a common axis (see figure 4). To insure that
each of the three systems would image the same reference area,
each CCD sensor was appropriately displaced laterally from
the local optical axis of their respective lens. This allowed a
common reference area from the reference plane to be imaged
onto each of the three CCD sensors. This new set-up then
allowed each of the triple particle images to be exposed onto
a separate CCD sensor, hence preventing the overcrowding
problem. Furthermore, off-the-shelf optics could now be
used to construct the DDPIV camera, negating the need to
invest in costly custom-built large lenses. In functionality, this
new design is equivalent to the single lens design discussed
above and shown in figure 3 (Gharib et al 1998). It can be
seen in figure 4, for example, that a particle located at A
produces an image towards the upper left corner in CCD 1, an
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Figure 4. Implementation of 3D defocusing PIV allowing for the use of off-the-shelf hardware items.

image towards the upper right corner in CCD 2 and an image
towards the bottom side in CCD 3. When these images are
superimposed, the triple exposure in the form of an equilateral
triangle is regained.

2.3. Limitations

While all the modifications discussed above have been able to
improve the DDPIV hardware’s ability to image particles, the
geometric analysis that describes this system has still remained
the same, and has not been changed to reflect the hardware
modifications. To understand why such a change is necessary,
it is important to note that the two-dimensional derivation
requires the two pinholes to be off-axis in the Y–Z plane and on-
axis in the X–Z plane (see figure 2), allowing for the derivation
of equation (1a). Similarly, when an analysis is done with two
pinholes off-axis in the X–Z plane and on-axis in the Y–Z plane,
equation (1b) is derived. This is best seen by studying figure 5,
which is a three-dimensional view of the two-dimensional
optical set-up shown in figure 2. In figure 5, a particle located
at point A, which is not on the reference plane, is imaged
through a four-pinhole mask onto point A′. The four pinholes
are located on the mask such that two pinholes are placed on
the extremes of the lens’ vertical diameter, while the other two
pinholes are placed on the extremes of the lens’ horizontal
diameter. For clarity, the rays passing through the pinholes on
the lens’ vertical diameter are shown to be within the ‘vertical
plane’, while the rays passing through the pinholes on the lens’
horizontal diameter are shown to be within the ‘horizontal
plane’. Both of these planes, though tilted with respect to the
optical axis, remain flat and unbent. This pinhole arrangement,
as shown by the ray tracing, results in the exposure of four
particle images on the CCD plane, located at (x0, y′), (x0, y′′),
(x′, y0) and (x ′′, y0), where the centre of these points is located
at (x0, y0). This figure therefore shows that figures 1(b) and 2
are the projection of the vertical plane and its associated rays

and vertically placed CCD pinhole exposures onto the Y–Z
plane. Thus, within this projection onto the Y–Z plane, the
location of point A as a function of the exposure points, (x0,
y′) and (x0, y

′′), is described by equations (1a), (1c) and (1d).
Likewise, when the horizontal plane and its associated rays
and horizontally placed CCD pinhole exposures are projected
onto the X–Z plane, the location of point A within the X–Z
plane as a function of the exposure points, (x′, y0) and (x ′′, y0),
is described by equations (1b), (1c) and (1d).

While equations (1) can properly identify a particle
image’s location if the pinholes are located on the lens’
diameter as shown in figure 5, they cannot accurately predict a
particle’s location if the pinholes are located off the diameter
of the lens. This is best seen by studying figure 6. Two
pinholes, shown by the open circles, are used to demonstrate
the geometric optics for pinholes that are located on the lens’
vertical diameter, as previously shown in figure 5. In addition,
three pinholes, each located at the vertex of an equilateral
triangle, are shown by open stars. For ease of comparison,
the star-shaped pinholes are situated such that two of the three
pinholes are located on a vertical chord of the lens. Rays
emanating from point A pass through the pinholes on the
lens’ vertical diameter, and are refocused towards A′, leaving
two exposure points on the CCD plane, denoted by the solid
circles. Likewise, rays emanating from point A also pass
through the pinholes designated by the open stars (rays passing
only through the two pinholes that lie on the vertical chord of
the lens are shown), and are refocused towards A′, leaving
two exposure points on the CCD plane, denoted by the solid
stars. While the distance in the y-direction between the two
solid circles and the distance between the two solid stars seem
identical, the distance of the solid circles from the y-axis in
the x-direction is noticeably different from the distance of the
solid stars from the y-axis in the x-direction. This observation
clearly indicates that equations (1) cannot be used to accurately
determine the position of a particle in space if the pinholes are
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Figure 5. Application of two-dimensional equations (see equations (1)) to a full three-dimensional DDPIV system.

Figure 6. Comparison of imaging effects using an on-axis two-pinhole mask and an off-axis three-pinhole mask.

located off the lens’ diameter, and that a full three-dimensional
derivation is required for such an accurate determination.

3. Defocusing digital particle image velocimetry—a
three-dimensional geometric analysis

3.1. Derivation assumption

The derivations presented in this paper assume that the lenses
to be used in the optical system will be thin, and the F number
of the lenses defined as

F = f

D
, (4)

where f is the focal length of the lens and D is its diameter, will
be large to minimize the effects of spherical aberrations that
could lead to the distortion of the triangles imaged on the CCD
sensor. This assumption is important as it leads to the validity
of utilizing equations such as the general thin lens equation
within the derivations. The effects of spherical aberrations
become particularly noticeable at the edges of images for low

F number lenses. This is an important detail to be mindful of
in the design phase when selecting appropriate lenses for the
DDPIV camera system.

3.2. Volume of interest

A simplified representation of the DDPIV system, including
the viewing cones of each of the CCD sensors, is shown in
figure 7. The volume where all three viewing cones intersect
defines the ‘observable domain’. The location where all three
viewing cones intersect at a point is identified as Zmin, which
defines the closest point to the lens plane in which a particle
can be identified in space. A plane cut in between the reference
plane and Zmin is extracted and shown in figure 8. The light
grey shows the areas seen by each CCD sensor, the medium
grey shows the areas seen by two CCD sensors, and the
dark grey shows the area seen by all three CCD sensors. While
the sides of the observable domain have an associated radius of
curvature, for the purposes of analysis, a second contour may
be redefined by introducing the imbedded inverted equilateral
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Figure 7. Three-dimensional defocusing arrangement upon which the full three-dimensional equations are derived.

Figure 8. Inscribed domain of interest in the mutually observed
region of all three lenses. (The cross-section of the plane cut is
shown in figure 7.)

triangle. This second contour, which now subsections a
cross-section of the ‘domain of interest’ within the observable
domain, is a favourable one because of its ability to uniquely
and completely express the geometric parameters of the system
using equations exclusively, with fewer inputs than required in
previous derivations. It is important to note that even though
the cross-section of the domain of interest is approximated by
a triangular cross-section, the cameras will have the ability
to capture the particle images outside the domain of interest,
though within the observable domain. Conceptually then, the
complete domain of interest extends from Zmin back to the
reference plane and can be characterized as a tetrahedron,
with the cross-sectional area increasing with distance away
from the optical origin. The domain of interest, however,
will not include the reference plane since particles imaged
from this plane onto the CCD sensors result in exposures
that are located at identical locations on the three sensors,
and therefore full three-dimensional spatial information of the
imaged particle will not be identifiable (see PGDM and PG).
From this complete domain of interest, only a segment of finite
thickness is selected to be imaged (see figure 9). Therefore,

the ‘volume of interest’ may be uniquely defined by three
parameters: side-length of the front-face, apf, side-length of
the back-face apb, and the thickness of the volume, az. Due to
convention and geometric arguments, apb must be larger than
apf. Figure 10 depicts the cross-sectional view of the front and
rear faces of the volume of interest. It will be shown that the
geometric parameters of the system are dependent primarily
upon the side-lengths of the front and rear faces of the volume
under analysis.

It is also important to note that from geometry,
the vertices of the equilateral triangle are all equidistant
from the optical axis. There are important consequences in
having the domain of interest positioned in this orientation.
Namely, the projection of the three-dimensional optical
geometry onto the X–Z and Y–Z planes would result in different
distances of the lenses from the optical axis as shown in
figures 11 and 12, respectively. The asymmetrical lens
distances in the X–Z plane shown in figure 11 must be
taken into account in the full three-dimensional derivations
characterizing the geometry of the DDPIV camera system. As
a result, equations will no longer be strictly a function of the
side-length lens difference, d, but also of γ , the radial distance
of the lenses from the optical axis (shown in figure 11).

From the geometric descriptors of the volume of interest,
the location of Zmin relative to the optical origin is

Zmin = Za + az

(
apf

apf − apb

)
, (5)

where Za is defined to be the location of the front face of
the volume of interest relative to the lenses plane (optical
origin). The parameter, d, a derived quantity in the full three-
dimensional derivation, is determined to be

d = Za(apb − apf) − azapf

az

. (6)

This is a very significant result because the lens separation
distance is now completely defined by the location and
dimensions of the volume of interest, whereas previous
derivations required this to be an input parameter.
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Figure 9. Two-dimensional projection of a three-dimensional defocusing optical model with a new domain of interest.

Figure 10. Volume of interest in the full three-dimensional
derivation.

3.3. Image coordinates

When the optics and the CCDs are placed around the optical
axis at the vertices of an inverted equilateral triangle, the triple
exposure is also in the form of an equilateral triangle (see
figure 4). The coordinates of these exposure points, (xB, yB),
(xTL, yTL) and (xTR, yTR), referenced in figure 13, are defined
by a fixed axis centred on each of the three CCD sensors and
are superimposed onto a single plane to generate an equilateral
triangle. The abscissa and ordinate of the coordinate system
in figure 13 are represented in this way to be consistent with

Figure 11. X–Z projection of the three-dimensional DDPIV camera system.

the coordinate systems of figures 4, 5, 7, 9, 10, 11 and 12.
These three pairs of image coordinates collectively define the
projection of particles located at the space coordinates (X, Y,
Z ) as follows:

xB = −M

Z
[XL + γ (L − Z)] +

2 − √
3

2
√

3
h (7a)

xTR = xTL = − M

2Z
[2LX − γ (L − Z)] +

2 − √
3

2
√

3
h (7b)

yB = −Y l

Z
(7c)

yTR = M

2Z
[−d(L − Z) − 2LY ] (7d)

yTL = M

2Z
[d(L − Z) − 2LY ], (7e)

where the parameter γ , shown in figure 11, is the radial
distance from the optical Z-axis to the lenses (it can also
be shown from geometry that γ = d/

√
3), l is the distance

between the lenses and sensors along the optical axis, h is the
height or size of the CCD sensor, and M is the magnification
as defined below:

M = f

L − f
= hZmin

d(L − Zmin)
. (8)
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Figure 12. Y–Z projection of the three-dimensional DDPIV camera system.
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Figure 13. An imaged particle on a superimposed sensor plane
located on the optical axis at Zmin.

These expressions for the image coordinates were derived
under the stipulation that at Zmin the largest possible triangular
image should be mapped onto the CCD sensor. Therefore, the
side-length of the axisymmetric, equilateral triangle mapped
onto the CCD sensor at Zmin is optimized to be the physical
size of the CCD sensor, h. While this condition is necessary to
satisfy this stipulation, it is not sufficient. Figure 14 shows that
while the triangle side-length is optimized to the sensor size, its
location is not, as the lower portion of the triangle lies outside
the sensor area (Ponchaut et al 2004). To accommodate for
this, all three CCD sensors are shifted down by an equivalent
amount, as indicated by the last terms of equations (7a) and
(7b). With these shifting terms, the entire image, including a
particle located on the optical axis at Zmin, can be completely
mapped onto the CCD sensor as seen in figure 15. Note
that these shifting terms are independent of magnification
and are constant for a given CCD sensor. The large triangle,
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Figure 14. Superposition of the projection of particles onto the
CCD sensors without the compensating shift term.

therefore, represents a point located on the optical Z-axis at
Zmin. The three smaller triangles located at the vertices of the
large triangle correspond to points located at the vertices of
the triangular cross-section of the front face of the volume of
interest (see figure 10). The significance of these triangles
is that they clearly demonstrate that every point within the
volume of interest in real space, including its boundary and the
back face, can be imaged onto a CCD sensor within this large
triangle. The projection of the points located at the vertices of
the triangular cross-section of the back face of the volume of
interest would look similar to figure 15; only the three corner
triangles would have a smaller side-length, b, as the Z-axis
location of such particles will be closer to the reference plane.
For completeness, a triangle in the centre of the optimized Zmin

triangle was added, representing a particle located on the front
face of the domain of interest on the optical axis.
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Figure 15. Superposition of the projection of particles, located at the front face of the domain of interest, onto the CCD sensors with the
compensating shift term.

Finally, solving equations (7) for the space coordinates
(X, Y, Z ) as a function of the three-particle image coordinates
gives

X = 1

2L

(−2ZxTL

M
+ γ (L − Z)

)

= 1

2L

(−2ZxTR

M
+ γ (L − Z)

)

= 1

L

(−ZxB

M
− γ (L − Z)

)
, (9a)

which simplifies to

X = −x0Z

ML
, x0 = xTR + xTL + xB

3
, (9b)

Y = 1

2L

(
−2ZyTL

M
+ d(L − Z)

)

= − 1

2L

(
−2ZyTR

M
− d(L − Z)

)
= −yBZ

l
, (9c)

which simplifies to

Y = −y0Z

ML
, y0 = yTR + yTL + yB

3
, (9d )

and

Z =
(

1

L
+

b

MdL

)−1

=
(

1

L
+

ζ

MγL

)−1

, (9e)

where (x0, y0) marks the centre of the equilateral triangle that
the particle images identify, and ζ is the distance from the
centre of this equilateral triangle to any of the particle’s images
that identify any vertex of the equilateral triangle (i.e. (xB, yB),
(xTL, yTL) or (xTR, yTR)).

3.4. Image separation

The image separation, b, characterizes the side-length of
the projected triangular image in the superimposed sensor
plane (see figure 9). This follows the derivation of the local
sensor coordinates, and applying the distance formula for two
adjacent vertices of the equilateral triangle yields

b = 1

K

∣∣∣∣ 1

Z
− 1

L

∣∣∣∣ (10)

where

K = 1

MdL
. (11)

Note that at Zmin the length of b is equivalent to the size of the
CCD sensor; in other words the ratio between the separation
distance and the sensor height is exactly one. This parameter
captures the particle’s Z-location along the optical axis.

The sensitivity of the system to depth location, established
by Willert and Gharib (1992), is based upon the rate of change
of b with respect to the distance along the optical axis. The
ability of the image separation parameter to discern a small
displacement of a particle along the optical axis is expressed
in terms of a separation gradient given by

∂b

∂Z
= − 1

KZ2
. (12)

This term should be minimized (i.e. its magnitude should be
maximized) when determining the geometric parameters of
the system so that smaller relative uncertainties of particle
location within the Z-direction (depth) can be obtained.

4. Error analysis

Given the expressions for a particle’s image positions on the
CCD sensors as a function of the particle’s spatial coordinates
(see equations (7)), a particle’s image displacement as a
function of the particle’s spatial displacement can be obtained
by differentiation (Lawson and Wu 1997):

dxB = ∂xB

∂X
dX +

∂xB

∂Y
dY +

∂xB

∂Z
dZ

dyB = ∂yB

∂X
dX +

∂yB

∂Y
dY +

∂yB

∂Z
dZ

...

dxTL = ∂xTL

∂X
dX +

∂xTL

∂Y
dY +

∂xTL

∂Z
dZ

(13)

where {dX, dY, dZ} are the displacements in the space
coordinates, and {dxB, dyB, dxTR, dyTR, dxTL, dyTL} are the
displacements in the local image coordinates. By evaluating
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the partial derivatives, these equations can be expressed in
matrix form for simplicity,



dxB

dyB

dxTR

dyTR

dxTL

dyTL




=




A 0 B

0 A C

A 0 D

0 A E

A 0 D

0 A F







dX

dY

dZ


 , (14)

where

A = −ML

Z
, B = MγL

Z2
+

MXL

Z2
, C = YLM

Z2
,

D = −MγL

2Z2
+

MXL

Z2
,

E = MdL

2Z2
+

MYL

Z2
, F = −MdL

2Z2
+

MYL

Z2
. (15)

Since the present derivation is focused on determining the
measurement uncertainties due to the camera design and
geometry, the uncertainties due to h, d, l, f, L and γ are
neglected. Furthermore, it can also be assumed that the
uncertainties in the image plane are equal such that

δ(dxB) = δ(dxTR) = δ(dxTL) = δ(dyB)

= δ(dyTR) = δ(dyTL) = �x. (16)

Inverting equation (13) results in




dX

dY

dZ


 =




A′ 0 B ′ C ′ B ′ −C ′

−2D′ E′ D F ′ D′ G′

−2H ′ 0 H ′ −I ′ H ′ I ′







dxB

dyB

dxTR

dyTR

dxTL

dyTL




,

(17)

where

A′ = −Z

3LM

(
d2 + 3γ (γ − 2X)

d2 + 3γ 2

)
,

B ′ = −Z

3LM

(
d2 + 3γ (γ + 3X)

d2 + 3γ 2

)
,

C ′ = −ZXd

LM

(
1

d2 + 3γ 2

)
,

D′ = −YZγ

LM

(
1

d2 + 3γ 2

)
, E′ = −Z

3LM
, (18)

F ′ = −Z

3LM

(
d2 + 3γ (γ + 3Y )

d2 + 3γ 2

)
,

G′ = −Z

3LM

(
d2 + 3γ

(
γ − Yd

γ

)
d2 + 3γ 2

)
,

H ′ = −γZ2

LM

(
1

d2 + 3γ 2

)
, I ′ = dZ2

LM

(
1

d2 + 3γ 2

)
.

Using standard error analysis, the uncertainties on a particle’s
displacement in space coordinates are:

δ(dX) = �x√
3

|Z|
ML

√
1 +

X2

γ 2
(19a)

Figure 16. Error ratio δ(dZ)

δ(dY )
versus the off-axis position, Y

γ
, for

various distances to the camera, Z

γ
. Here, g represents γ .

δ(dY ) = �x√
3

|Z|
ML

√
1 +

Y 2

γ 2
(19b)

δ(dZ) = Z2

MdL
�x = KZ2�x. (19c)

Similarly, using equation (12), the uncertainty of the separation
parameter, b, becomes

δ(db) = �x. (20)

Since one of the benefits of the DDPIV system is its ability
to provide depth information, a useful parameter that can be
used to measure the overall performance of the system is the
ratio of the out-of-plane to the in-plane uncertainties:

eYZ = δ(dZ)

δ(dY )
= (|Z|/γ )√

1 + Y 2

γ 2

(21a)

eXZ = δ(dZ)

δ(dX)
= (|Z|/γ )√

1 + X2

γ 2

. (21b)

From these equations, it can be seen that the uncertainty ratios
δ(dZ)

δ(dY)
and δ(dZ)

δ(dX)
are a linear function of Z. With respect to

the off-axis variables, δ(dZ)

δ(dY)
is a function of Y only, while

δ(dZ)

δ(dX)
is only a function of X. Also, the uncertainty ratio

expressions are identical in form. Interesting to note is that
equations (19) and (21) suggest that the proper non-
dimensionalization parameter for each of the X, Y and Z
coordinates is not d, the lens spacing distance, as has been
suggested by PG, but rather γ , the radial distance of the lens
from the optical axis. Therefore, variations of δ(dZ)

δ(dY)
with

respect to Y
γ

and Z
γ

are shown in figures 16 and 17. For
comparison with PG, this ratio is also plotted with respect
to Y

d
and Z

d
in figures 18 and 19. Furthermore, plots of the

uncertainty ratio δ(dZ)

δ(dX)
will not be shown as these plots will be

identical to those of δ(dZ)

δ(dY)
. Equation (21a) clearly shows that

the uncertainty ratio is maximized when the particle is located
on the optical axis (Y = 0), as shown in figure 18. Also, for
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Figure 17. Error ratio δ(dZ)

δ(dY )
versus distance to camera, Z

γ
, for

various off-axis positions, Y

γ
. Here, g represents γ .

Figure 18. Ratio δ(dZ)

δ(dY )
versus the off-axis position, Y

d
, for various

distances to the camera, Z

d
.

the various Z
d

plots, on the optical axis and on the maximum
off-axis locations, the uncertainty ratios are uniformly 13%
and 39%, respectively, less than the uncertainty ratio values
reported in figure 5 of PG. In figure 19, a plot of δ(dZ)

δ(dY)
as

a function of depth, Z
d

, for various off-axis distances, Y
d

, is
plotted. For a given off-axis location, the uncertainty ratio
is seen to vary linearly with the depth location, Z. As in
the previous plot, the uncertainty ratios, on-axis and at the
maximum off-axis locations, are similarly seen to be uniformly
13% and 39%, respectively, lower than the corresponding
uncertainty ratio given in PG.

5. Discussion

While the equations derived by WG and PGDM and
expanded upon by PG were insightful, there remained some
ambiguity from extending a two-dimensional derivation to
three-dimensional applications resulting from not thoroughly
looking into the complete geometry of the system. Below, four
areas where the effects of a full three-dimensional derivation

Figure 19. Error ratio δ(dZ)

δ(dY )
versus distance to camera, Z

d
, for

various off-axis positions, Y

d
.

Table 1. Comparison between the two-dimensional and the present
derivations of the geometric parameters Zmin and d.

Two-dimensional
derivation Present derivation Equation

Zmin
d(L−c)

c+d
Za + az

(
apf

apf−apb

)
(5)

d d > 2L2

kZ
kX

h(L−c)−2L

Za(apb−apf )−azapf

az
(6)

are significant are discussed. These include new expressions
for the geometric parameters Zmin and d, the effect of the X–
Z plane asymmetries on image coordinates, and a discussion
of the differences in the expressions utilized in uncertainty
analyses and their impact on optimization.

5.1. A comparison of geometric parameters Zmin and d

The first series of equations that introduced a defining
distinction between the two derivations are the equations for
Zmin and d. Table 1 summarizes the equations in order to
compare the derivation by PGDM and PG with the current
derivation.

While the two-dimensional derivation is dependent upon
the dimensions of a cube, c, that indirectly defines the volume
of interest, it is also dependent upon the geometry of the
system: distance to the reference plane, L, and the side-
length of the lens configuration, d. However, in the present
full-three-dimensional derivation, inputs directly define the
volume of interest such that Zmin is completely characterized
by the location and size of the volume of interest. In other
words, Zmin can be determined exclusively by inputs. No
further calculations are required (i.e. d and L) to determine
its placement with respect to the lens plane. The second
distinction is in the lens separation distance, d. In the papers by
PGDM and PG, the lens separation distance is a variable input
subject to a constraint dependent upon resolution parameters,
kX and kZ (see table 1). However, in the present derivation, the
parameter is completely defined by the location and parameters
defining the volume of interest and ascertained naturally
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Table 2. Comparison between the two-dimensional and the present derivations of the image coordinates.

Two-dimensional derivation Present derivation Equation

x0 X = −x0Z

ML
, x0 = xTR+xTL

2 X = −x0Z

ML
, x0 = xTR+xTL+xB

3 (9b)

y0 Y = −x0Z

ML
, y0 = yTR+yTL

2 Y = −y0Z

ML
, y0 = yTR+yTL+yB

3 (9d)

xB Not provided −M

Z
[XL + γ (L − Z)] + 2−√

3
2
√

3
h (7a)

xTR −MLX

Z
−MLX

Z

[
1 − γ (L−Z)

2XL

]
+ 2−√

3
2
√

3
h (7b)

xTL −MLX

Z
−MLX

Z

[
1 − γ (L−Z)

2XL

]
+ 2−√

3
2
√

3
h (7b)

yB Not provided yB = − Y l

Z
(7c)

yTR
M

2Z
[−d(L − Z) − 2LY ] M

2Z
[−d(L − Z) − 2LY ] (7d )

yTL
M

2Z
[d(L − Z) − 2LY ] M

2Z
[d(L − Z) − 2LY ] (7e)

Table 3. Comparison of the two-dimensional and the present derivations of the uncertainties of the system.

Two-dimensional derivation Present derivation Equation

δ(dX) K|Z|d�x

√
1 + 2X

d2

2 �x√
3
K|Z|d

√
1 + 3X2

d2 = �xK|Z|γ
√

1 + X2

γ 2 (19a)

δ(dY ) K|Z|d �x√
2

√
1 + 4Y 2

d2
�x√

3
K|Z|d

√
1 + 3Y 2

d2 = �xK|Z|γ
√

1 + Y 2

γ 2 (19b)

δ(dZ)
√

2KZ2�x KZ2�x (19c)

δ(db)
√

2�x �x (20)
δ(dZ)

δ(dY )

2|Z|
d

√
1+( 2Y

d )
2

√
3(|Z|/d)√
1+ 3Y2

d2

= (|Z|/γ )√
1+ Y2

γ 2

(21a)

from the geometry of the system. This has the advantage
of reducing the number of input variables and intermediate
variables required to define the geometric parameters d and
Zmin, hence allowing for an easier camera design optimization
process.

5.2. The effects of the asymmetrical lens locations in the X–Z
plane on the image coordinates

Another benefit the full three-dimensional derivation has
provided is the explicit derivation and expression of x0 and
y0, which are needed to define the X and Y spatial coordinates.
In PGDM and PG, the optical arrangement about the optical
axis is symmetrical, corresponding to the Y–Z plane view
shown in figure 12. Since their derivation is based on two
pinholes, the third pinhole, (xB, yB), is not shown, and as a
result, the expressions for x0 and y0 became a function of only
two-particle image coordinates, (xTR, yTR) and (xTL, yTL), as
shown in table 2. While PG have implicitly suggested the
proper form of x0 and y0 after performing a two-dimensional
derivation, the present three-dimensional derivation explicitly
derives the proper expressions shown in equations (9b) and
(9d). In addition, a comparison of the other two image
coordinate pairs (xTR, yTR) and (xTL, yTL) between the two
derivations is shown in table 2. While the y-components are
identical between the two derivations, there is a stark contrast
for the x-components: a reflection of the asymmetry in the
X–Z plane (see figure 11) that was not considered in the
two-dimensional derivation. In the present derivation, the x-
components of the image coordinates were derived using the
projection of the geometry onto the X–Z plane for guidance.
Analogously, the y-components of the image coordinates were
derived with the Y–Z projection of the system as a guide. As a

result, the y-components naturally have identical expressions
in both derivations. For the x-components, however, the
present derivation includes the expression given in the two-
dimensional derivation, as well as two additional terms. These
two new terms are directly attributed to the asymmetry in the
X–Z plane and the shifting term, respectively.

5.3. Uncertainty analysis

The derived uncertainties on displacements (dX, dY, dZ ) are
repeated in table 3 and compared with the results of PG.
The distinction between the two-dimensional and full three-
dimensional derivations of the uncertainties in the coordinates
is not in the trends but in the detail. Specifically, all
uncertainties are distinct and for fixed depth locations, δ(dX)

and δ(dY ) are minimized on the optical axis (equations (19a)
and (19b)) while the uncertainties in dZ vary quadratically with
Z and are independent of the X and Y coordinates. Because
of the two-dimensional derivation of PG, the expressions
for δ(dX) and δ(dY ) are different in form, while the three-
dimensional derivations show that these expressions are
identical in form. In the present derivation, δ(dZ) is seen
to be of the same form as the two-dimensional derivation,
though smaller by a constant factor of

√
2. Hence, the

two-dimensional derivations over-predicted the geometric
uncertainties by 41%.

The ratio of the out-of-plane to the in-plane uncertainties,
δ(dZ)

δ(dY)
, as discussed earlier, follows the same trends as the plots

published in PG. However, the present results show that this
ratio is reduced by 13% for all points located on-axis. For
points farther away from the axis, the uncertainties are reduced
further from those reported in PG, such that at the maximum
off-axis location, Y

d
= 1, the uncertainties reach a maximum

reduction of 39%.
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One of the goals of describing the defocusing digital
particle image velocimetry system three dimensionally is to
understand how to design a system that would minimize
the uncertainties. If all parameters can be characterized
geometrically, then this optimization process can be carried
out in a more systematic manner if limits of their values can be
determined a priori. However, if more parameters are given
as inputs, as in the case of the two-dimensional derivation, the
process of optimization becomes more tedious, unless there
are circumstances where input parameters are specified due to
other constraints. One way to reduce the uncertainties, is to
reduce the uncertainty ratio, δ(dZ)

δ(dY )
, shown in table 3. Note that

by increasing the distance of the lens from the optical axis,
γ , this uncertainty ratio will decrease. This trend, however, is
not evident in the in-plane uncertainties, δ(dX) and δ(dY ), as
increasing γ will increase these uncertainties; and in the out-
of-plane uncertainty, δ(dZ), as increasing γ will decrease this
uncertainty, as can be seen in table 3. Therefore, a compromise
must be achieved based on the design requirements of the
system that dictate γ and hence d (see equation (6)), and
the error ratio. A second way to reduce the uncertainties is to
decrease the range of Z by decreasing the distance between the
volume of interest and the lens plane. Finally, the uncertainties
can be reduced by considering the separation gradient, ∂b

∂Z
.

Intuitively, it would seem that if the system sensitivity is
increased, the geometric uncertainties would decrease. This
is in fact verified by expressing the geometric uncertainties
δ(dX),δ(dY )and δ(dZ) in terms of the separation gradient
∂b
∂Z

,

δ(dX) = − �x

∂b
∂Z

( |Z|
γ

)
√

1 +
X2

γ 2
(22a)

δ(dY ) = − �x

∂b
∂Z

( |Z|
γ

)
√

1 +
Y 2

γ 2
(22b)

δ(dZ) = 1(
∂b
∂Z

)�x, (22c)

where the separation gradient appears in the denominator.
From these expressions, it can be seen that minimizing the
separation gradient (maximizing its absolute value) will yield
smaller uncertainties.

6. Conclusion

In summary, the present derivation affords the complete
characterization of the system using equations with fewer
inputs than is required by those presented by PGDM and
subsequently PG and assists in the optimization process of
a three-dimensional DDPIV camera system. This was done
by eliminating the idea of an indirect cubic representation of
the volume of interest and replacing it with a more relevant
triangular volume of interest. The lens separation distance can
now be expressed through a geometric equation, and Zmin now
is dependent only upon the location and dimensions of the
triangular domain of interest. Furthermore, by incorporating a
full three-dimensional analysis, the asymmetrical nature of the
geometry in the X–Z plane showed that all the x-components of
the image coordinates became functions of the radial distance

of the pinholes from the optical axis, γ , rather than the
separation between pinholes, d. Similarly shown is that γ ,
and not d, is the proper non-dimensionalization parameter for
the spatial coordinates in the expressions for the geometric
uncertainties. These resulted in expressions that accurately
describe the optics of this technique, as well as uncertainties
that better reflect the performance of the defocusing DPIV
system.

Beyond these improvements, one recommendation would
be to incorporate the radius of curvature of the volume of
interest (see figure 8). Although this may significantly add
to the complexity of the equations, the derivation will allow
the volume of interest to fully incorporate the full lateral
extent of the observable domain. A second recommendation
to improve the present derivation would be to include the
effects of aberrations and their effects on particle identification,
for cases where the F number is small and these effects are
significant. These recommendations collectively will allow
further improvements and advancements in our ability to
completely characterize the geometry of three-dimensional
DDPIV to assist in design and optimization processes.
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