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This paper is motivated by an observation: in the nascent state of vortex breakdown
before it develops into a full-grown radial expansion, an initially straight vortex core
first swells, and does so even in a straight pipe for no apparent reason. Although
this initial swelling may be explained in many ways according to the perspectives
chosen, we offer our own interpretation framed solely within vorticity dynamics:
the radial swelling as well as the subsequent growth are induced by the azimuthal
vorticity gradient decreasing downstream. The negative azimuthal vorticity gradient
first appears at start-up and moves eventually into the region where the circulation
reaches its steady-state value. The vorticity gradient can become negative without
necessarily being accompanied by a sign-switch of the azimuthal vorticity itself.

The key point – that the negative azimuthal vorticity gradient induces initial
radial swelling and its growth – is demonstrated in two analyses. First, a kinematic
analysis results in an equation for the radial velocity where the azimuthal vorticity
gradient appears as a source term. Its solution shows, in general and explicitly,
that the negative azimuthal vorticity gradient does induce radially outward velocity.
Two heuristic examples serve to illustrate this point further. In the second analysis,
using the equation of motion in the streamline coordinates, the negative azimuthal
vorticity gradient is shown to diverge the meridional streamlines radially. A numerical
simulation using a modified vortex filament method not only corroborates this role
of the azimuthal vorticity gradient in initiating and promoting the radial expansion,
but also adds details to track the formation process. Both analyses and simulation
support our interpretation that the initial radial swelling and its subsequent growth
are induced by the negative azimuthal vorticity gradient.

1. Introduction
The phenomenon of vortex breakdown is of intriguing complexity, and can be

interpreted and understood in many different ways. A legion of definitive experiments,
ingenious theories and illuminating numerical simulations have been put forth by
various authors, which have enriched our understanding of the phenomenon (e.g.
Benjamin 1962; Sarpkaya 1971; Garbowski & Berger 1976; Escudier, Bornstein &
Maxworthy 1982; Spall, Gatski & Ash 1990; Brown & Lopez 1990; Beran & Culick
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1992; Leibovich & Kribus 1990; Buntine & Saffman 1995; Visbal 1996; Goldshtik &
Hussain 1997; Saghbini & Ghoniem 1997; Wang & Rusak 1997; Darmofal et al. 2001;
Ruith et al. 2003). Since in this limited space we cannot discuss these and other
important papers, we refer to review articles by Leibovich (1984), Delery (1994), and
Lucco-Negro & O’Doherty (2001).

Here, with a focus upon the transient formative stage of vortex breakdown, we
consider a simple question: “For an initially straight vortex core, what initiates its
radial expansion?”

This initial radial enlargement has often been attributed to an adverse pressure
gradient: for instance, in a swirling pipe flow, an increase of pressure in the divergent
section of the pipe. But even in a straight pipe, vortex breakdowns are known to occur
(e.g. Bellamy-Knights 1976; Kurosaka et al. 2003). In view of the overall pressure
drop through the pipe, what then triggers the enlargement of the otherwise straight
vortex core?

Although other explanations for this initial radial bulge may be offered, our inter-
pretation based on vorticity dynamics is this: it is caused by the self-induction by the
azimuthal vorticity decreasing downstream or negative gradient of the azimuthal
vorticity, which appears first in the start-up.

For a steady and fully developed state of vortex breakdown, Brown & Lopez (1990)
demonstrated the direct connection between the sign-switch in the azimuthal vorticity
and the radial expansion. However, even in the absence of the sign-switch, it is the
negative gradient of the azimuthal vorticity that triggers the initial radial swelling and
sustains its subsequent growth. The sign-switch of the azimuthal vorticity itself may
be regarded as a special case of the negative azimuthal vorticity gradient; when the
upstream positive azimuthal vorticity changes to negative downstream, its gradient
becomes negative. But the negative azimuthal vorticity can exist even when the
azimuthal vorticity does not switch its sign. This crucial role of the negative gradient
of the azimuthal vorticity does not seem to have received the attention it warrants.

We start with the observed transient flow preceding the vortex breakdown and
describe how, in such an early transient stage, the negative azimuthal vorticity gradient
may originate.

2. Transient formation and generation of the azimuthal vorticity gradient
As an early sign of vortex breakdown, an initially straight vortex core reveals a

hint of an impending change, a slight swelling, an example of which is shown in
figure 1.

It was obtained in a straight pipe fitted with upstream guide vanes in a test rig
at Miyazaki University. Its original setup is described in Kurosaka et al. (2003).
Figure 1 was obtained by installing a quick activating valve downstream of the test
section, which was opened suddenly to achieve impulsive transient formation of vortex
breakdown; the opening of the guide vanes was fixed. The initially straight dye starts
to swell at 5 s after the opening of the valve (figure 1b), followed by the continuous
radial enlargement into a bubble, which maintains near symmetry up to 7.83 (fig-
ure 1f ), until asymmetry starts to develop downstream.

Though not visible in figure 1 for the centerline, dyes injected slightly off-centre
display spiralling vortical structure (e.g. Srigrarom 2001), as displayed in figure 2
(Srigrarom 2001) for a delta wing at 20◦ of angle-of-attack when the free-stream
velocity was quickly increased.
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Figure 1. Transient formation in a straight pipe initiated by sudden opening of a valve.

Figure 2. Transient formation over a delta wing caused by an increase in flow speed.
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Figure 3. (a) A definition sketch and (b) the negative azimuthal vorticity gradient at the
pipe entrance.

These spiralling vortex filaments, observed mostly in the steady condition, have
been called various names such as vortex-ring structures (Escudier et al. 1982),
striated vortices (Payne, Ng & Nelson 1988), and tassel vortices (Lowson 1988).

These dyed particles are drawn into the low-pressure centre of vortex filaments and
become aligned approximately with the local vorticity vector. Therefore the spiralling
pattern may be interpreted as an approximate manifestation of a spiralling vortex
filament. The vorticity along the filament can be decomposed using the cylindrical
coordinates of figure 3(a). The axial coordinate z is positive in the downstream
direction; viewed from downstream, the azimuthal angle θ is taken to be positive
counterclockwise, in the same direction as swirl imparted upstream.



4 M. Kurosaka and others

Figure 3(b) shows, at the entrance to the test pipe, the azimuthal vorticity drawn
on a meridional plane, whose magnitudes are shown to decrease in the down-
stream direction. This negative azimuthal vorticity gradient arises in the start-up.

To explain this concisely, it is easier to consider the following case that is slightly
different from that of figure 1: the free-stream velocity remains constant and the
vorticity, generated by a vorticity generator such as a rotor or stationary guide vanes
located upstream of the test pipe, begins to increase in time (e.g. by an increase
in rotor speed or guide vane opening). As the vorticity increases in time, so do its
components, ωz and ωθ . Here we focus on the temporal increase in ωθ . A fluid particle
entering the pipe entrance possesses higher ωθ than one which entered earlier; as these
particles are carried by a constant free-stream velocity and flow into the pipe, the
temporal increase in ωθ appears as a spatial decrease in the downstream direction.
This gives rise to the negative gradient of ωθ in z: ∂ωθ/∂z < 0 shown in figure 3(b).

We offer our interpretation that the initial radial swelling and its subsequent growth
are induced by this negative gradient of ωθ . The azimuthal vorticity is coupled with
ωz, which changes in time and space, too. But for interpretation we only need consider
∂wθ/∂z. As long as the axial gradient of the azimuthal vorticity remains negative,
the radial expansion is induced. Thus, the sign of ∂ωθ/∂z, a generalization of the
sign-switch in ωθ (Brown & Lopez 1990), serves as a single descriptor for the radial
change of a vortex core, from its inception to the steady state.

We will show this role of the azimuthal vorticity gradient in the radial deformation
in two analyses: (a) a kinematic analysis in § 3 resulting in equation (2), where the
gradient of ωθ appears explicitly as a source term for ur , followed by two examples
in § 4, and (b) a dynamical analysis in § 5 leading to equation (13) where such a
gradient is shown to be directly linked with the curvature change in the meridional
streamline. In order to embody these analyses, details of the radial swelling and its
growth are numerically simulated by the use of a modified vortex filament method
(§ 6). The three-dimensional rendering of the results not only agrees favourably with
the analyses but also enables us to track visually the evolutionary growth of a vortex
breakdown.

Throughout this paper, we phrase our explanation strictly in the vocabulary of
incompressible vortex dynamics where the pressure does not appear. This is because,
unlike pressure, nowadays velocity and vorticity distributions can be globally mapped
out by digital particle image velocimetry (DPIV). Hence, the present interpreta-
tion framed in terms of velocity and vorticity may be subjected to future DPIV
testing.

We start from the kinematic induction of ur by the azimuthal vorticity gradient.

3. A general relationship between radial velocity and the gradient
of the azimuthal vorticity

A connection between the radial velocity, ur , and the axial gradient of the azimuthal
vorticity arises naturally once we eliminate the axial velocity uz between the azimuthal
component of vorticity,

ωθ =
∂ur

∂z
− ∂uz

∂r
,

and the equation of continuity for axisymmetric flows,

1

r

∂rur

∂r
+

∂uz

∂z
= 0.
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zUpward induction by vortices on the left
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Figure 4. Induction by the neighbouring vortices. The vortices may be regarded as either
two-dimensional or a head-on view of ωθ of figure 3; (a) vortex strength decreasing from left
to right, (b) vortex strength increasing.

This immediately results in a differential equation for ur

∂2ur

∂r2
+

1

r

∂ur

∂r
− ur

r2
+

∂2ur

∂z2
=

∂ωθ

∂z
, (1)

where the axial gradient of the azimuthal vorticity ∂ωθ/∂z appears as a non-
homogeneous, source term for the radial velocity.

The effect of the vorticity gradient on ur may be illustrated, in its most basic form,
for a two-dimensional flow. Consider a single row of discrete vortices all of the same
sign (figure 4), which may also be regarded as a head-on view of the azimuthal
vorticity, ωθ , of figure 3(b).

In figure 4(a) the strength of the vortices decreases from left to right, shown as
circles with decreasing radii. If we focus upon the one in the middle, the downward
induction by the neighbouring vortices on the right (hollow arrow) would be less than
the upward induction by the neighbouring vortices on the left (filled arrow); as a net
result, the middle vortex moves upward.

If the strength of the vortices increases from left to right, shown as circles with
increasing radii (figure 4b), then the middle vortex would move downward. If all
the vortices were of the same strength, the upward and downward inductions would
be the same. No matter how strong the individual vortices are, there is no vertical
movement. In other words, vertical motion occurs only when there is a change in the
strength of vortices in relation to adjacent ones, i.e. the z-gradient of vorticity.

This can be seen analytically by solving equation (1) for unbounded flows. We
apply the Hankel transform involving a kernel of rJ1(αr) and obtain the following
result (Appendix A):

ur (r, z) = − 1

2π

∫ ∞

−∞
dz′

∫ ∞

0

∂ωθ (r
′, z′)

∂z′

√
r ′

r
Q1/2(ζ ) dr ′, (2)

where Q1/2 = Q0
1/2 is the Legendre function of the second kind of the zeroth degree

and of the order 1/2, and

ζ ≡ r2 + r ′2 + (z − z′)2

2rr ′ � 1. (3)

In obtaining (2), the following identity (Watson 1966) is used after the inverse Hankel
transform: ∫ ∞

0

e−αtJ1(bt)J1(ct) dt =
1

π
√

bc
Q1/2

(
α2 + b2 + c2

2bc

)
. (4)
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Figure 5. Plot of Q1/2.

From the integral representation of Q1/2 (Erdélyi 1953, p. 155)

Q1/2(ζ ) =

∫ ∞

0

[ζ + (ζ 2 − 1)1/2 cosh t]−3/2 dt, (5)

together with (3), it follows that Q1/2 is always positive, as is also observed from
figure 5. Q1/2 has a singularity at ζ = 1, corresponding to r = r ′ and z = z′, the source
point, as expected.

From this positive Q1/2, a key conclusion follows immediately from (2): owing to
a minus sign on the right-hand side, when the gradient of the azimuthal vorticity is
negative everywhere, ∂ωθ/∂z < 0, then ur > 0; the negative gradient of the azimuthal
vorticity induces positive radial velocity or radial expansion, figure 4(a). Conversely,
the positive gradient of the azimuthal vorticity induces negative radial velocity or
radial contraction, figure 4(b). Further, due to the rapid decay of Q1/2 away from
the source point, the correspondence between the azimuthal vorticity gradient and
radial change is expected to be local; this point will be confirmed by examples to be
presented in § 4 and also by a numerical simulation in § 6.

In equation (2), the radial velocity at the observation point (r, z) at a given time
is expressed as an integral carried over all sources, i.e. the gradients of the azimuthal
vorticity. As such, it should be derived from the Biot-Savart law; this is shown
in Appendix B. However, the derivation from the Biot-Savart law, with integrals
involving vorticity rather than its gradient, required a sequence of steps, through
which we were guided only by knowing this final result. Also, from the original
form of the Biot-Savart formula, one cannot draw any conclusion about the sign
of ur directly. In contrast, the above direct derivation starting from a differential
equation (1) and resulting in equation (2), where ∂ωθ/∂z appears explicitly as a
source term, seems to display naturally both the role of the axial gradient of the
azimuthal vorticity and the complete dependence of the sign of ur only on that
of ∂ωθ/∂z. Furthermore, according to the present approach, it is trivial to extend
these results to the asymmetric case by simply replacing ur and ∂ωθ/∂z with their
azimuthally averaged values, e.g.

ūr =
1

2π

∫ 2π

0

ur dθ.

Q1/2 in equation (2) may also be written in terms of the complete elliptic integrals
of the first and second kind, respectively, as shown in equation (B 8) of Appendix B,
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Figure 6. Definition sketch. (a) Perspective. Note circular arrows are the azimuthal vorticity
and not swirl. (b) a meridional cut.

identical to those appearing in the expression for the streamfunction of a vortex ring,
Lamb (1932).

A similar expression for the axial velocity uz obtained by a rather cumbersome
application of the Biot-Savart law is given in equation (B 18), Appendix B.

It is worthwhile to point out that these expressions for ur and uz are exact and
general: they are valid in the presence of the other components of vorticity, ωr and
ωz, and valid for both unsteady and steady flows, and even for viscous flows. For
bounded flows, equation (1) can be solved subject to appropriate boundary conditions,
but even when there is a surrounding pipe wall, equation (2) for ur and the one for uz

in (B 18) are valid as long as the vortex centre remains at the centre of the pipe. This
is because the effect of the wall can be replaced by the mirror image of the centre
vortex, which is located at infinity.

4. Two examples
To exemplify a radial bulge induced by the azimuthal vorticity gradient, we apply

the preceding general results to a particular case: a semi-infinite vortex core initially
straight and having only an azimuthal vorticity component, ωθ . This simple model of
non-swirling flow serves to illustrate the key feature most conveniently. Since there
is no axial component of vorticity, the flux of vorticity normal to any cross-section
of the vortex is zero. Therefore, this vortex without circulation, can terminate in
flow with its open end at z = 0 (see figure 6). The vortex extends from z =0 to far
upstream, z = −∞. Outside of the core, r > a, ωθ = 0. Downstream of the open end,
z > 0, the vorticity is zero even for r < a; at z =0 there is a discontinuity in vorticity.

Inside the vortex, the azimuthal vorticity is continuously distributed. If discretized
(figure 6b), this would correspond to an array of vortex rings occupying multiple
annuli. For t < 0, induction is off and our interest is focused at t = 0 when the
induction is turned on (e.g. ‘solid barriers’ separating the annuli dissolve). We will
start with the simplest, example 1, where ωθ is constant, and continue to example 2,
where it varies in z.

Example 1: constant azimuthal vorticity
Upstream of the open end, z < 0, the azimuthal vorticity is a constant, ωθ0. Thus

the azimuthal vorticity is given by

ωθ = ωθ0[1 − H (z)]H (a − r), (6)

where H (z) is a step function.
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Figure 7. ur for example 1: (a) radial velocity profile, (b) radial velocity vs. axial distance,
(c) expansion of the open end.

The negative vorticity gradient exists only at the open end z =0, where the vorticity
drops from ωθ0 to zero, in the form of a delta function:

∂ωθ

∂z
= −ωθ0δ(z)H (a − r). (7)

Note that although in the meridional representation, figure 6(b), the sense of the
rotation of top and bottom vortices is opposite to each other, with regard to the re-
spective azimuthal unit vectors pointing in the counterclockwise direction, figure 6(a),
their signs are both positive. Thus for the bottom as well as for the top, the gradient
of the azimuthal vorticity is negative at z = 0.

Application of equation (2) yields

ur (r, z) = ωθ0aF (r, z), (8a)

where

F (r, z) =
1

2πa

∫ a

0

√
r ′

r
Q1/2

(
r2 + r ′2 + z2

2rr ′

)
dr ′. (8b)

Figure 7(a) is the profile of radially induced velocity, ur , at five axial locations,
showing explicitly the radially outward velocity. Figure 7(b) shows a plot of ur at
r/a =0.7 versus z; ur attains its maximum at z = 0 and decays rapidly within an axial
distance of the vortex core diameter. As a result, the open end of the vortex with the
negative azimuthal vorticity starts to bulge while the rest remains virtually straight,
figure 7(c).

Equation (B 18) in Appendix B is used for figure 8(a), the profile of axially induced
velocity, uz, at five axial locations, and figure 8(b), a plot of the axial velocity at the
vortex centreline. The radial profiles of the axially induced velocity are jet-like and
triangular, as expected from the constant ωθ0, and the deceleration occurs rapidly
toward the open end of the vortex: the axial velocity at z = 0 is half of that far
upstream. As a consequence of the deceleration, fluid particles start to collect near
the open end and we call their accumulation a pile-up. The radially outward velocity
and the axial deceleration or the pile-up at z = 0 are of course related by continuity;
a defect in mass flux in the axial direction is balanced by radial outflow.
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Figure 8. uz for example 1: (a) axial velocity profile, (b) axial velocity vs. axial distance.

A referee brought to our attention the fact that this radial expansion and the
axial pile-up is analogous to the magnetic field induced by electric current for an
open-ended solenoid.

Example 2: varying azimuthal vorticity
We extend our consideration from a stepwise decrease in vorticity to a case where

the azimuthal vorticity varies continuously in the axial direction but still remains
unchanged radially, i.e., ωθ (z)H (a − r). Equation (2) becomes

ur (r, z) = −a

∫ 0

−∞

∂ωθ (z
′)

∂z′ F (r, z − z′) dz′. (9a)

where F is given in equation (8b).
When the azimuthal vorticity varies linearly in z between −l < z < 0, where

ωθ = −(ωθ0 z)/l and for z < −l, ωθ = ωθ0 (see figure 9(a) where l = a), equation (9a)
becomes

ur (r, z) =
ωθ0

l
a

∫ z+l

z

F (r, η) dη. (9b)

Figure 9(b) shows ur for r = 0.7a, indicating the radial expansion, figure 9(c). For
future reference, we note that the radial swelling extends into the plateau region
z < −l, where the azimuthal vorticity becomes constant. The fact that the radial
velocity is positive even in such a plateau region may be seen explicitly by evaluating
equation (9b) at z = −l; from the symmetry of F with respect to η,

ur (r, −l) =
ωθ0

l
a

∫ l

0

F (r, η) dη (9c)

which is positive.

5. Dynamical relationship between the gradient of the azimuthal vorticity
and the streamline curvature

Equation (2) in § 3 was derived by using only the equation of continuity and the
definition of vorticity; therefore, as stated earlier, it is a kinematic relationship. As



10 M. Kurosaka and others

z/a = –

z/a

z/a = –l/a

0.10

0.08

0.06

0.04

0.02

0
–2 –1 0

u r
/(
ω

θ
0a

/l
) 

at
 r

/a
 =

 0
.7

z/a

Linear changePlateau region

(a)

(b)

1

l–
2

a

ωθ0
ωθ(z)

(c)

Figure 9. Example 2: (a) A linear change in the azimuthal vorticity (l = a), (b) radial
velocity vs. axial distance, and (c) radial expansion.

a complement to this, we present, from the equation of motion in the meridional
plane, a dynamical relationship between (i) the gradient of the azimuthal vorticity and
(ii) the curvature of the instantaneous streamline.

In the meridional plane (r, z plane), we choose meridional streamline coordinates
(s, n), where s is along, and n normal to, the cut of an instantaneous streamsurface
by the meridional plane, called the meridional streamline (figure 10a).

From the axisymmetric and inviscid equations of motion written in this coordinate
system, one can show exactly (equation (C 10) in appendix C) that

∂ωθ

∂s
=

1

r2
m

∂rm

∂t
+

∂

∂s

(
C

4π2r2qm

∂C

∂n

)
− ∂

∂s

(
1

qm

∂H

∂n

)
(10)

together with ((C 12) and (C 13))

∂C

∂n
= 2πrωs = 2πrωm cosφm,

∂C

∂s
= −2πrωn = −2πrωm sinφm. (11)

Here, ωθ is the azimuthal vorticity, rm the radius of curvature of the meridional stream-
line, t the time, qm =

√
u2

r + u2
z the meridional velocity, C(r, z, t) =C(n, s, t) = 2πruθ

the local circulation, r the radial distance, H = p/ρ + u2/2 the total head,
ωm =

√
ω2

r + ω2
z the meridional vorticity, ωs and ωn are vorticity components tangent

and normal to the meridional streamline (figure 22, Appendix C), respectively, and
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Figure 10. Streamlines in the meridional plane; (a) streamline coordinates,
(b) sign-convention for the radius of curvature.

φm the angle between ωm and qm. The sign convention of the radius of curvature is
shown in figure 10(b) together with its centre, O . This result is applicable both for
confined and unconfined flows.

For the special case of the steady state where the first term on the right-hand side
of equation (10) drops out, integration in s yields

ωθ =
C

4π2r2qm

∂C

∂n
− 1

qm

∂H

∂n
. (12)

When n is replaced with the stream function ψ by dn= dψ/rqm (dropping a factor
of 2π), this becomes the Bragg–Hawthorne (1950) equation, a starting point for
many investigations of steady-state vortex breakdowns. When the circulation does
not change along the streamsurface, ∂C/∂s =0, Brown & Lopez (1990) noted
∂C/∂ψ = dC/dψ = ωz/uz, where ωz and uz are the axial component of vorticity
and velocity, respectively. This may also be obtained from equations (11) as a special
case of φm =0, i.e. the meridional vorticity being aligned with the meridional velocity.

From this, they transformed the Bragg–Hawthorne equation into an expression
which most transparently reveals that, for a diverging streamsurface, a competition
between the two terms on the right-hand side of equation (12) can result in the
negative ωθ , i.e. ωθ sign-switch in a radially expanded region. The sign-switch has
been confirmed by experiments (e.g. Shih & Ding 1996). It also points out the role
of the total-head variation (originated far upstream such as within the boundary
layers over the guide vanes and subsequently redistributed) in establishing a steady-
state in an otherwise inviscid process. Still, such steady-state analysis, where the
streamsurfaces diverging downstream are assumed to be already established, does not
appear to explain why such radial expansion occurs in the first place.

We return to the present transient start-up when the circulation ramps up from
zero to its steady-state value during a ramp-up time τ . When this inertial time scale,
τ , is shorter than the slower viscous scale, the viscous term is not significant and
the inviscid equation (10) is appropriate. Furthermore, for a fast ramp-up with a
shorter τ, the second and third terms on the right-hand may become negligible at
the start-up. More precisely, this is so when a dimensionless parameter involving τ ,
B = (C2

∞maxτ )/(4π2r3
c U∞) is small, where C∞max is the steady-state value of the total
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Figure 11. Curvature change and azimuthal vorticity gradient; (a) negative azimuthal
vorticity gradient, (b) positive azimuthal vorticity gradient.

circulation C∞(z, t) = limr→∞ 2πruθ , rc the vortex core radius, and U∞ the free-stream
velocity. This parameter B arises after non-dimensionalizing each term of equation
(10) by these characteristic parameters. For small values of B , equation (10) at
start-up becomes

∂ωθ

∂s
≈ 1

r2
m

∂rm

∂t
. (13)

According to equation (13), both the change in the azimuthal vorticity along the
meridional streamline, ∂ωθ/∂s, and the temporal change in the radius of curvature rm

have the same sign. Thus, as sketched in figure 11(a), once the radial expansion starts
in the region where ∂ωθ/∂s < θ and rm1 > 0, then it continues so that the meridional
streamlines become more curved with a smaller radius of curvature, rm2 <rm1. Hence,
in the presence of the azimuthal vorticity decreasing downstream, a slight swelling
initiated by such a negative vorticity gradient will continue to enlarge radially; the
negative vorticity gradient promotes and sustains its subsequent growth.

Conversely, once the radial flattening starts in the region where ∂ωθ/∂s > 0 and
rm1 > 0 (figure 11b), it further becomes levelled so that the streamlines have the larger
radius of curvature rm2 >rm1.

As stated, equation (13) is valid for a small B and at start-up. Even for a small B ,
it would lose its validity at the later stage of transient formation, when t/τ is large,
because of the aforementioned role of the total head at a steady state.

The validity of equation (13) has been investigated by Johnson (2004), which we
summarize next. By a numerical simulation similar to the one in § 6, the left-hand side
of equation (10) is compared with its right-hand side, using (a) only the first term, i.e.
the same one as the right-hand side of equation (13), and (b) the first and second term
(the third term involving the total head is not evaluated because in this simulation
pressure does not appear explicitly). For B = 0.37 and t/τ = 60, which are perhaps
beyond their presumed limits of accuracy, (a) and (b) are found to show the correct
trend with that of the left-hand side. As expected, (b) follows the left-hand side more
closely than (a) but even for (a), its sign, the most relevant, generally agrees with
the one on the left-hand side. This similarity in trend is also found for B = 15 and
t/τ = 1.5. Additionally, the change in the curvature of the instantaneous streamline
as shown in figure 11 has been found to correspond to that of the more commonly
visible streaklines such as the ones to appear in § 6.

As a special case, when θm of figure 10(a) is small, ∂ωθ/∂s ∼ ∂ωθ/∂z. Hence in
the above argument, ∂ωθ/∂s may be replaced by ∂ωθ/∂z. Viewed in this way, the
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examples worked out in § 4 may be regarded as a subset of this case when rm1 = ∞
initially, and C =0.

6. A numerical simulation
To give a more tangible form to the above analyses, we numerically simulated

the transient formation. Here we present a condensed description of the numerical
method employed, and discuss the key results (for additional details, see Cain 2001;
Srigroram 2001; Wimer 2003; Johnson 2004).

We wish to follow the evolution of the vorticity field, which may be best captured
by the vortex filament method (Leonard 1985). It has an advantage of preserving the
identity of vortex lines while tracking their self-induced evolution. The vortex lines
move by the local velocity determined by the Biot-Savart law. (Although the inviscid
vorticity equation is not solved directly, this transport would satisfy the equation, e.g.
Whitham 1963.) The method does not explicitly invoke pressure gradient, another
advantage consistent with the approach of this paper.

An application of the vortex filament method to the vortex breakdown was
attempted by Nakamura, Leonard & Spalart (1983). While their basic formulation
methodology is adaptable to the present need, major modifications to be described
shortly must be introduced to meet our objectives of simulating a transient process.

The vortex filament method has drawbacks, however. When the vortex filaments are
subjected to a high degree of stretching, remeshing is in general desirable to maintain
sufficient resolution in discretization (Ashurst & Meiburg 1988). Since our objective
is to capture the general trend and compare qualitative features with the analyses,
rather than to simulate the flow field most accurately, remeshing is not incorporated.
Another drawback of the vortex filament method is its inability to account for the
reconnection of vortex lines by dissipation (Meiburg 1995). Although this would
become a problem in simulating the fully steady state, for the present study limited
to the evolutionary stage where the dissipative effect is expected to be small, the
advantage of the vortex filament method is judged to outweigh this drawback. It is
for these reasons that the vortex filament method is chosen.

6.1. Description of simulation setup

Simulation is restricted to axisymmetric vortex breakdown or a bubble in its formation
stage in unconfined flow. The pipe entrance is at z = 0. This is also where all the
actions of rotors and guide vanes in imparting swirl are concentrated within an
infinitesimally thin disk, a concept known as the actuator-disk model in turbomachines
(e.g. Greitzer, Tan & Graf 2004). In z < 0, the region upstream of rotors/guide vanes,
flow is irrotational, convected with uniform free-stream velocity. Across z = 0, the
fluid acquires circulation discontinuously. A vortex tube, with a prescribed circulation
and its axis initially along z, materializes at z = 0 and flows into the region z > 0. The
vortex tube is discretized as vortex filaments, which are closely packed both radially
and circumferentially so that there is no empty space within the vortex tube. The
total circulation around the vortex tube, which is prescribed at z = 0 and changes in
time, is C∞(t). It is radially distributed among the vortex filaments in such a way that
the axial vorticity approximates that for a Burger vortex:

ωz =
C∞(t) exp(−(r/rc)

2)

π(rc)2
, corresponding to uθ =

C∞(t)

2πr
[1 − exp(−(r/rc)

2)] (14)

where rc is the core radius taken to be 0.3 in terms of unit length.
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Figure 12. Efflux of radial vorticity due to a change in the circulation.

Each vortex filament is further discretized axially as smaller vortex segments, the
end points of which are called nodes. In z > 0, self-induction among the nodes takes
place, and they are advected downstream at a velocity equal to the sum of the induced
velocity at each node and the free-stream velocity. The time-varying total circulation
as well as local circulations distributed among vortex filaments remain unchanged
as the nodes are advected downstream. As time progresses, vortex filaments keep
emerging out of z = 0, and for z > 0, the circulation around the vortex tube displays
a spatial variation decreasing downstream.

Whenever the total circulation changes, we need to ensure that the solenoidality
condition for vorticity is satisfied: divω = 0. Consider a general case where the circul-
ation changes (figure 12) and integrate the solenoidality condition over a cylindrical
body, with radius r and axial length δz where the circulation decreases from C to
C − δC.

Such a change in the circulation must be accompanied by the radial efflux of the
vorticity emanating from the lateral surface S of the cylindrical body: dC/dz = 2πrωr .
Thus, there must be vortex filaments branching off radially and outwardly between
two vorticity vectors, one entering the upstream circular surfaces of the cylindrical
body, ω, and the other exiting downstream ω − δω (figure 12). The radial vorticity ωr

emanates from every point along the periphery of the surface S. Collectively it forms
a vortex disk extending radially outward. (The presence of this vortex disk does not
alter the analyses of § 3–§ 5.) In the present simulation, the continuous radial disk is
discretized into a finite number of radially branched filaments or spokes. This is the
first and significant modification to Nakamura et al. (1983). Far downstream, there
is no boundary condition specified, in contrast to Nakamura et al. where the vortex
filaments assumed predetermined values. This is a second modification.

For changes in the circulation, we focus on the following: the total circulation
prescribed at z = 0, C∞(t), has a initially small value of 0.1 (in terms of unit length
and time) in the forerunning period shown in blue, figure 13.

It then ramps up between t = 0.6 and t = 0.8 (corresponding to ramp-up time
τ = 0.2) in red, increasing to its final value, C∞max = 20. Thereafter it remains
unchanged in the plateau, green. The free-stream velocity is always U∞ =5 (in terms
of unit length and time). We define the circulation number based on the core radius,
rc, as Ωrc

= C∞max/U∞rc. The final value, C∞max = 20, corresponds to Ωrc
= 13.3, which
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Figure 14. With induction off: (a) side view vortex filaments showing radial spokes and
tracking lines, (b) perspective, and (c) spatial change in the circulation.

is in the range of steady-state values for pipe experiments: for instance, for a straight
pipe (Kurosaka et al. 2003) Ωrc

= 15.
As the vortex tube is advected, this temporal change in the circulation specified at

the actuator disk at z =0, C∞(z = 0, t), appears as a spatial variation along the vortex
tube as C∞(z, t). Figure 14 displays this in the same colour-code as figure 13 and is
shown for the outermost filaments at r = 0.42, shaded like a solid cylindrical surface,
in a side view, figure 14(a), and a perspective view, figure 14(b).

Although the induction always takes place in z > 0, before we present these inductive
results we need to show the basic set-up in its simplest form. For this reason, the
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induction is turned off in figure 14(a, b). Figure 14(c) shows the total circulation
change along the vortex axis. The circulation decreases along the positive z-direction.
The temporally increasing C∞(z = 0, t) at the pipe entrance, as it is advected in
sequential order, manifests itself as decreasing from upstream to downstream. In
figure 14(a, b), the lines that run axially along the length of the vortex tube are the
vortex filaments, one of which is highlighted in yellow. Nodes, which discretize each
vortex filament, emerge from z = 0 in equal time-steps and are advected downstream
with the same free-stream velocity. Hence, with the induction off, nodes are separated
axially by equal distance and their radial positions remain unchanged, as shown.
The circumferential lines are merely tracking lines connecting nodes of the vortex
segments; they do not represent vorticity vectors. Once the induction is turned on,
however, the velocity induced from the rest of the nodes determined by the Biot-
Savart law would move each node to a new position. The radial positions of the
nodes would change and the axial distances between them be no longer equal.

Shown also in figure 14(a, b) are radial spokes emanating from each node of the
vortex filaments distributed circumferentially. Spokes emerge wherever the circulation
changes, from the open end of the blue region, and all the nodes in the red region.
These radial spokes are emitted from the vortex filaments at other radii but only those
for the outermost radius are shown here. Radial spokes are also discretized in the
radial direction and have their own nodes. Once the induction is turned on, these radial
spokes would not remain straight; after they emerge at z = 0 as straight lines, they
would take the shape determined by the induction. Their complicated configurations,
however, tend to conceal main features that we wish to emphasize. Therefore, these
radial spokes, though present, will be suppressed hereafter in visualizing the results.

6.2. Results

For vortex filaments having the initial radial position, ri = 0.12, figure 15 shows sub-
sequent evolution in perspective views. For all of them, a single filament is highlighted
in yellow to display its twisting and turning. From t = 0 to t = 0.6, the forerunning blue
region with the small total circulation of 0.1 emerges from z = 0, the actuator disk.

When the ramp-up begins at t =0.6, the corresponding red region where the
circulation changes linearly starts to emerge, as seen from the image at t =0.65. At
t = 0.8, when the circulation attains its final value of 20, a slight bulge takes shape
and a vortex filament highlighted in yellow twists slightly; the green region with the
constant value of C∞max = 20 emerges immediately after. From t = 0.9 to 1.0, the radial
expansion grows, followed by the radial contraction downstream. Upstream of the red
region, the radial expansion now propagates to the green region of constant circulation
with additional twisting. At t = 1.35 and 1.82, the green region diverges more radially
and the downstream side of the red surface becomes recessed or caved-in, which
implies a backflow. The entire evolutionary process is reminiscent of shock formation
and for the t, z-plane representation of this, see Johnson (2004). The originally straight
vortex core, after undergoing an initially modest bulge, changes into a shape bearing
a resemblance to the observed bubble form of vortex breakdown, all being the result
of self-induction. These images appear to compare well with figure 1(a–f ). Next, we
examine these results in detail.

6.3. Initial generation of azimuthal vorticity gradient and swelling

The initial twisting of the vortex filament observed at t =0.8 in figure 15 is an embodi-
ment of the azimuthal vorticity gradient. The generating mechanism of azimuthal
vorticity gradient near z = 0 is shown schematically in figure 16, a view from the top.
Consider the ramp-up region (red) where circulation increases in time. For vorticity
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Figure 15. Temporal evolution in perspective; the same vortex filament is highlighted in
yellow.

at t = t1, its downstream end b is subject to azimuthal velocity determined by the
circulation. Hence the end b spins circumferentially, while the node at its upstream
end a at z =0 is yet to spin. Therefore the vorticity a–b tilts in the circumferential
direction, resulting in azimuthal vorticity ωθ1. At time t = t1 + δt , new vorticity c–d
emerges out of z = 0, as the vorticity a–b is swept downstream to a′ and b′. (For
the reason described in § 6.4, ωθ of a′–b′ becomes less than that of a–b, a difference
which we ignore for now.) The downstream end d subject to higher circulation spins
faster while the upstream end c at z = 0 has not yet spun. Hence vorticity c–d tilts
more, resulting in larger azimuthal vorticity ωθ2 >ωθ1: azimuthal vorticity decreases
downstream. This is how in the ramp-up region the negative azimuthal vorticity
gradient, ∂ωθ/∂z < 0, is generated, which causes radial swelling.

6.4. Further comments on azimuthal vorticity

In the ramp-up region, the circulation continuously decreases in the downstream
direction. Hence, for any vorticity in the red region in figure 16 on its way downstream,
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Figure 16. Generation of negative azimuthal vorticity gradient.
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Figure 17. (a) Sign switch and vorticity in forerunning region, (b) twisting of a vortex
filament.

its two ends continuously spin at different rates, the downstream end slower and the
upstream faster. As a result of this differential rate of spin, the downstream end
may eventually lag behind the upstream end, resulting in ωθ < 0, a sign-switch in
azimuthal vorticity in the ramp-up region, figure 17(a) red. On the other hand, in the
forerunning region with a constant and small circulation, vorticity remains essentially
axial, figure 17(a) blue. (Although at the open end of the forerunning region, there is
a negative azimuthal vorticity gradient, it is too small to cause any perceptible effect.)
Figure 17(b) is a composite of figures 16 and 17(a), schematically representings the
vortex filament highlighted in yellow of figure 18(a), a computed result at t =0.82.
The decomposition of vorticity vectors along the yellow vortex filament is shown in
white in figure 18(a).

In the red region of figure 18(a), the bulge attains its maximum near the middle, the
point m, where the axial distance between tracking lines is the shortest. This embodies
the connection between the radial expansion and the axial pile-up (§ 4, example 1).

Figure 18(b) shows the change of ωθ along the yellow filament plotted against z.
Figure 18(c) is the corresponding plot for its gradient. In the red region, from point
p to point m and beyond, the azimuthal vorticity gradient is negative, which induces
the radial expansion. Since near q, the vorticity is in the axial direction only, a change
in ωθ from negative to zero forces the generation of the positive azimuthal vorticity
gradient near z = 1. There, this positive azimuthal vorticity gradient induces a slight
contraction; a similar positive azimuthal vorticity gradient near z =0 also induces a
slight necking between z = 0 and point p.
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Figure 18. At t = 0.82; (a) side-view, (b) the azimuthal vorticity along the yellow vortex
filament, and (c) azimuthal vorticity gradient.

6.5. Plateau

Figures 19(a) and 19(b) are enlarged views at t =1.35, where the radial expansion and
the pile-up appear exclusively in the green region of constant circulation. We call the
rim of the recess a turning point where the vortex filament turns back. The concave
recessed portion represents a backflow. Figure 19(c) shows the azimuthal vorticity
distribution along the yellow vortex filament. The azimuthal vorticity sign-switch
occurs in the radially divergent section.

From figure 19(d), the azimuthal vorticity gradient is negative in most of the green
region, which corresponds to the radial expansion, as expected. Near the downstream
end of the green region, a small portion with a positive azimuthal vorticity gradient
induces the contraction of the streamsurfaces, thus providing a closure to the vortex
breakdown. Therefore, the vorticity gradient is responsible both for the radial expan-
sion and subsequent contraction, the latter imposing a limit to the radial growth of
the vortex breakdowns.

The propagation of the radial expansion deep into the green plateau region of
the steady-state circulation Cmax is due to a differential rate of spin between the
leading and trailing ends of a vorticity vector. As seen in example 2 of § 4, figure 9(b),
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Figure 19. At t = 1.35; (a) perspective view, (b) side-view, (c) azimuthal vorticity along the
yellow vortex filament, and (d) azimuthal vorticity gradient.

the radially outward expansion does not stop at the ramp-up region but extends
somewhat beyond the downstream end of the plateau region. This extended expansion
is illustrated in figure 20.

As a fluid particle located at a radius r is radially displaced outwards to r + δr ,
the leading end of a vorticity vector ω, b, also moves radially outwards. Since the
circulation Cmax remains the same, the azimuthal velocity at the point b positioned
at a larger radius is less than that at a, the trailing end of ω: uθb <uθa . Due to this
differential rate of spin, the azimuthal vorticity of ω′ is less than that of ω: ω′

θ <ωθ .

As a result, in the plateau region a negative azimuthal vorticity gradient is now set
up, which induces radial enlargement there and provides a feedback to the farther
upstream movement of the negative azimuthal vorticity gradient.
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Figure 20. Tilting of a vorticity vector and the negative vorticity gradient
in the plateau region.

The yellow vortex filament and its corresponding nodes emerge initially at a fixed
location on the z = 0 plane. Thus, these nodes represent fluid particles released continu-
ously at the same point. In other words, the yellow vortex filament consisting of such
nodes can be interpreted as a streakline. Conversely, in flow visualization of vortex
breakdowns, a dyed marker released from a fixed point is sucked into the low-pressure
core of a vortex filament and stays there; therefore, as mentioned earlier, an observed
streakline approximates a vortex filament. Hence we can associate the vortex filaments
in the present numerical simulation with the dyed streaklines in flow visualization.

The visually misleading sense of rotation of the yellow streakline opposite to the
upstream swirl has been a subject of controversy. The opposite-hand winding of the
streakline is simply due to the continuous tilting of vorticity vectors in the azimuthal
direction, from ω to ω′ (figure 20) and beyond, caused by a difference in swirl between
the smaller and larger radii. The pathlines still rotate in the same sense as the base
swirl (Visbal 1996; Cain 2001). The opposite sense of rotation is another example of
the familiar – but often ignored – deceptive nature of the streakline in unsteady flows
(e.g. Kurosaka & Sundaram 1986).

The closeness of the outer and inner surfaces as observed in the image at t = 1.82
of figure 15 implies the proximity of opposing vorticity vectors and the resulting
cross-vorticity diffusion. This and the steepening of vorticity gradient signify the need
for viscosity in establishing steady-state.

For a bubble at such steady state, its downstream portion is known to change both
azimuthally and periodically, which may be observable from figure 1(h). This distur-
bance is describable as exp[i(mθ − Ωt)] where Ω is the frequency and m azimuthal
wavenumber found to be |m| =1 (Faler & Leibovich 1978; Garg & Leibovich 1979).
Associated with this are emptying and filling of fluid in the bubble, occurring 180◦

apart in the azimuthal direction. However, before such asymmetry develops, for the
symmetric bubble, there is filling from downstream, but no emptying, as seen from
figure 1(f ). This result from flow visualization is consistent with figure 19. (Numerical
extension to a steady state including asymmetry and viscosity as well as experimental
confirmation by DPIV of the relationship between negative azimuthal vorticity
gradient and radial expansion is left to the future.)
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7. Summary
We started by focusing on a simple but vexing question about the formative stage

of axisymmetric vortex breakdown in a straight pipe: for an initially straight vortex
core, what initiates its radial expansion in the first place? To answer this question,
we presented our own interpretation within the framework of incompressible vortex
dynamics without invoking pressure: it is the negative azimuthal vorticity gradient
that triggers and self-sustains the radial expansion. By tracking a transient process, we
argued that this negative azimuthal vorticity gradient emerges in a ramp-up region,
then spreads into the plateau region having steady-state circulation.

Analytically, this role of the vorticity gradient specifically appears in two key
equations: (2) and (13). Figure 4 best illustrates the basic physical element at work: it is
the relational change of the azimuthal vorticity or its gradient, and not the magnitude
of vorticity itself, that determines the net inductive effect of radial expansion.

The direct connection between the negative azimuthal vorticity gradient and the
radial expansion are much in evidence in the three-dimensional rendering of the nu-
merical simulation, figures 18 and 19. When the azimuthal vorticity gradient becomes
positive, the expansion ends and radial contraction begins. Thus the azimuthal
vorticity gradient acts as a driving force to start the initial swelling, spur subsequent
expansion, and stop it.

C. B. C., J.D.W., W. F. J., and B.R. T. would like to express their gratitude for the
US Air Force for support while at the University of Washington. M.K. acknowledges
Dr Murray Tobak and Professor Ed Greitzer for their critical and constructive
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Appendix A
We apply the Hankel transform with a kernel of J1, Bessel function of the first

kind of the order 1, defined as

ū(α) =

∫ ∞

0

rurJ1(αr) dr (A 1)

which is related through its inverse

ur =

∫ ∞

0

αū(α)J1(αr) dα (A 2)

to equation (1). By using∫ ∞

0

r

(
∂2ur

∂r2
+

1

r

∂ur

∂r
− ur

r2

)
J1(αr) dr = −α2ū(α),

we obtain

d2ū(α)

dr2
− α2ū(α) = f̄ (α) (A 3)

where f̄ is the Hankel transform fo the right-hand side of equation (1),

f̄ (α) =

∫ ∞

0

rf J1(αr) dr, (A 4)

where f = ∂ωθ/∂z.
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The solution of (A 3) is given by

ū(α) = − 1

2α

∫ ∞

z

f̄ exp[−α(z′ − z)] dz′ − 1

2α

∫ z

−∞
f̄ exp[−α(z − z′)] dz′. (A 5)

Taking inverse transform and substituting (A 4), we obtain

ur = −1

2

∫ ∞

z

dz′
∫ ∞

0

r ′f (r ′, z′) dr ′
∫ ∞

0

J1(αr)J1(αr ′) exp[−α(z′ − z)] dα

− 1

2

∫ z

−∞
dz′

∫ ∞

0

r ′f (r ′, z′) dr ′
∫ ∞

0

J1(αr)J1(αr ′) exp[−α(z − z′)] dα (A 6)

Application of equation (4) yields equation (2).

Appendix B
For a vortex tube, we calculate the velocity at an observation point P (r, z) induced

by the vorticity at a source point Q(r ′, z′). The vorticity is independent of the polar
angle.

B.1. Radial velocity

By applying the Biot-Savart law, the radial component of velocity at P , which is
axisymmetric, is given by

ur (r, z) =
1

4π

∫ ∞

0

r ′ dr ′
∫ π

−π

Ir dφ, (B 1)

where

Ir ≡
∫ ∞

−∞

[
−ωθ (r

′, z′)(z′ − z) cosφ − 1
2
ωz(r

′, z′)r sin 2φ
]
dz′

(r ′2 − 2r ′r cos φ + r2 + (z′ − z)2)3/2
, (B 2)

and φ, the angle between P and Q, is shown in figure 21. When integrated over φ,
the integral involving ωz drops out and it becomes

Ir = −
∫ ∞

−∞

ωθ (r
′, z′)(z′ − z) cosφ dz′

(r ′2 − 2r ′r cos φ + r2 + (z′ − z)2)3/2
(B 3)

Integration by parts in z′ yields

Ir = −cosφ

∫ ∞

−∞

∂ωθ (r
′, z′)

∂z′
dz′√

r ′2 − 2r ′r cos φ + r2 + (z′ − z)2
. (B 4)
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Thus

ur (r, z) = − 1

2π0

∫ ∞

0

√
r ′

2r
dr ′

∫ ∞

−∞

∂ωθ (r
′, z′)

∂z′ Ir1 dz′, (B 5)

where

Ir1 =

∫ π

0

cosφ dφ[
r ′2 + r2 + (z′ − z)2

2r ′r
− cosφ

]1/2
. (B 6)

In the following integral representation of Qµ
ν (Erdélyi 1953, p. 156),

Qµ
ν (ζ ) = eµπi(2π)−1/2(ζ 2 −1)µ/2Γ

(
µ+

1

2

)[∫ π

0

(ζ − cos t)−µ−1/2 cos
((

ν + 1
2

)
t
)
dt − C

]

where C = cos(νπ)
∫ ∞

0
(ζ + cosh t)−µ−1/2 e−(ν+1/2)t dt , by choosing µ = 0 and ν = 1

2
, we

identify Ir1 as

Ir1 =
√

2Q1/2

(
r ′2 + r2 + (z′ − z)2

2r ′r

)
. (B 7)

Substitution of (B 7) into (B 5) yields the same result as equation (2). One can
express Q1/2 in terms of the complete elliptic integrals by using the following identity
(Abramowitz & Stegun 1970):

Q1/2(ζ ) = ζ

√
2

ζ + 1
K

(√
2

ζ + 1

)
− [2(ζ + 1)]1/2E

(√
2

ζ + 1

)
. (B 8)

B.2. Axial velocity

uz(r, z) =
1

4π

∫ ∞

0

r ′ dr ′
∫ π

−π

Iz dφ, (B 9)

and Iz is defined as

Iz ≡
∫ ∞

−∞

[ωθ (r
′, z′)(r ′ − r cosφ) − ωr (r

′, z′)r sinφ] dz′

(r ′2 − 2r ′r cos φ + r2 + (z′ − z)2)3/2
. (B 10)

Integrated over φ, the integral involving ωr drops out and integration by parts in
z′ yields

Iz = (r ′ − r cosφ)(I1 − I2), (B 11a)

where

I1 =
(ωθ (r

′, z′ → ∞) + ωθ (r
′, z′ → −∞))

(r ′2 − 2r ′r cos φ + r2)
, (B 11b)

I2 =
1

(r ′2 − 2r ′r cos φ + r2)

∫ ∞

−∞

∂ωθ (r
′, z′)

∂z′
(z′ − z) dz′√

r ′2 − 2r ′r cos φ + r2 + (z′ − z)2
. (B 11c)

Substitution of (B 11) into (B 9) yields

uz(r, z) =
1

2π

∫ ∞

0

[ωθ (r
′, z′ → ∞) + ωθ (r

′, z′ → −∞)]r ′Iz0 dr ′

− 1

2π

∫ ∞

0

r ′ dr ′
∫ ∞

−∞

∂ωθ (r
′, z′)

∂z′ (z′ − z)G dz′ (B 12a)
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where

Iz0 ≡
∫ π

0

(r ′ − r cos φ)

(r ′2 − 2r ′r cosφ + r2)
dφ, (B 12b)

and

G ≡
∫ π

0

(r ′ − r cos φ)

(r ′2 − 2r ′r cos φ + r2)
√

r ′2 − 2r ′r cosφ + r2 + (z′ − z)2
dφ. (B 12c)

Iz0 may be evaluated by contour integration as

Iz0 =
π

r ′ H (r ′ − r), (B 13)

where H is a step function.
For G of (B 12c), upon making the following change in the integration variable:

ψ =
π − ϕ

2
,

G may be written as

G =
2

(r ′ + r)
√

(r ′ + r)2 + (z′ − z)2

[
I

(1)
z1 +

2r(r ′ − r)

(r ′ + r)2
I

(2)
z1

]
, (B 14a)

where

I
(1)
z1 ≡

∫ π/2

0

dψ√
1 − �

k2 sin2 ψ
, (B 14b)

and

I
(2)
z1 ≡

∫ π/2

0

sin2 ψ

[1 − (1 − �
k′2 sin2 �

β) sin2 ψ]
√

1 − �
k2 sin2 ψ

dψ, (B 14c)

�
k2 ≡ 4r ′r

(r ′ + r)2 + (z′ − z)2
,

�
k′2 ≡ 1 − �

k2 =
(r ′ − r)2 + (z′ − z)2

(r ′ + r)2 + (z′ − z)2
,

sin
�
β ≡ |r ′ − r |

(r ′ + r)

√
(r ′ + r)2 + (z′ − z)2

(r ′ − r)2 + (z′ − z)2
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(B 14d)

I
(1)
z1 of (B 14b) may be expressed in terms of the complete elliptic integral of the first

kind, K , as

I
(1)
z1 = K(

�
k). (B 15)

I
(2)
z1 of (B 14c) may be expressed (Gradshteyn & Ryzhik 1965)

I
(2)
z1 =

1
�
k′2 sin

�
β cos

�
β
√

1−�
k′2 sin2 �

β

[
π

2
− K(

�
k)E(

�
β,

�
k′) − E(

�
k)F (

�
β,

�
k′) + K(

�
k)F (

�
β,

�
k′)

]
,

(B 16)

where K(
�
k) and E(

�
k) are the complete elliptic integrals of the first and second kind,

respectively: F (
�
β,

�
k′) and E(

�
β,

�
k′) are the incomplete elliptic integrals of the first and

second kind, respectively. Substitution of (B 15) and (B 16) into (B 14a) yields

G =
2

(r + r ′)
√

(r + r ′)2 + (z′ − z)2
K(

�
k)

± 1

r ′|z′ − z|

[
π

2
− K(

�
k)E(

�
β,

�
k′) − E(

�
k)F (

�
β,

�
k′) + K(

�
k)F (

�
β,

�
k′)

]
(B 17)
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where for the ± sign, plus denotes r ′ >r , minus r ′ < r . Finally substitution of Iz0 of
(B 13) into (B 12a) yields

uz = Z1(r) − 1

2π
Z2(r, z) (B 18)

where

Z1(r) =

∫ ∞

−∞

[ωθ (r
′, z′ → ∞) + ωθ (r

′, z′ → −∞)]

2
dr ′

Z2(r, z) =

∫ ∞

0

r ′ dr ′
∫ ∞

−∞

∂ωθ (r
′, z′)

∂z′ (z′ − z)G dz′.

Appendix C
We obtain the relationship between the gradient of azimuthal vorticity and the

radius of curvature of the instantaneous streamsurface. For an instantaneous
streamsurface cut by a meridional plane (r, z), introduce meridional streamline
coordinates (s, n) where s is the distance along a meridional cut of the instantaneous
streamsurface, to be called the meridional streamline, and n is normal to it. For any
quantity, F ,

∂F

∂r
=

∂F

∂n
cos θm +

∂F

∂s
sin θm, (C 1)

∂F

∂z
= −∂F

∂n
sin θm +

∂F

∂s
cos θm, (C 2)

where θm is the angle between a tangent to the meridional streamline and the z-axis.
The equation of continuity for axisymmetric flows may be written as

∂(rqm)

∂s
+ rqm

∂θm

∂n
= 0, (C 3)

where qm is the meridional velocity (figure 10)

qm =
√

u2
r + u2

z. (C 4)

We write the equation of motion as

∂u
∂t

+ grad H − u × ω = 0, (C 5)

where H is the total head, H = p/ρ + 1
2
u2, and ω the vorticity. The azimuthal

component of the equation of motion may be expressed as

∂C

∂t
+ qm

∂C

∂s
= 0, (C 6)

where C is the local circulation, C(s, n) = 2πruθ : of course, this is Kelvin’s theorem.
The radial and axial components of (C 5) are

∂ur

∂t
+

∂H

∂r
+

[
uzωθ − uθ

r

∂(ruθ )

∂r

]
=0, (C 7)

∂uz

∂t
+

∂H

∂z
+

[
−urωθ − uθ

r

∂(ruθ )

∂z

]
= 0. (C 8)
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Meridional
streamline

r
r

(a) (b)ωs ωn

∆n
∆s

Figure 22. Integration volume.

Multiplying (C 7) and (C 8) by uz and ur , respectively, and subtracting, and by the
use of (C 1) and (C 2), one obtains

ωθ +
∂θm

∂t
− C

4π2r2qm

∂C

∂n
+

1

qm

∂H

∂n
= 0. (C 9)

Differentiate (C 9) by s, one obtains

∂ωθ

∂s
− 1

r2
m

∂rm

∂t
− ∂

∂s

[
C

4π2r2qm

∂C

∂n

]
+

∂

∂s

[
1

qm

∂H

∂n

]
= 0. (C 10)

In deriving this, the following relationship is used: ∂θm/∂s = 1/rm where rm is the
radius of curvature of the instantaneous meridional streamline,

1

rm

=
d2r

dz2

[
1 +

(
dr

dz

)2]−3/2

. (C 11)

For ∂C/∂n appearing in the third term of (C 10), apply the solenoidality condition
for ω, div ω = 0, to an integral over an elementary volume of a body of revolution
with one side normal to the meridional streamline with length �n, figure 22(a). This
yields

∂C

∂n
= 2πrωs (C 12)

where ωs is the vorticity component tangent to the instantaneous streamline. Similar
application of the solenoidality condition to another elementary volume of a body of
revolution, figure 22(b), with a side surface of length �s and tangent of the meridional
streamline, yields

∂C

∂s
= −2πrωn. (C 13)
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