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Abstract—High-order accurate finite element methods provide
unique benefits for problems that have strong anisotropies and
complicated geometries and for stiff equation systems that are
coupled through large source terms, e.g. Lorentz force, collisions,
or atomic reactions. Magnetized plasma simulations of realistic
devices using the kinetic or the multi-fluid plasma models are
examples that benefit from high-order accuracy. The multi-fluid
plasma model only assumes local thermodynamic equilibrium
within each fluid, e.g. ion and electron fluids for the two-
fluid plasma model. The algorithm implements a discontinu-
ous Galerkin method with an approximate Riemann solver to
compute the fluxes of the fluids and electromagnetic fields at
the computational cell interfaces. The multi-fluid plasma model
has time scales on the order of the electron and ion cyclotron
frequencies, the electron and ion plasma frequencies, the electron
and ion sound speeds, and the speed of light. A general model
for atomic reactions has been developed and is incorporated in
the multi-fluid plasma model. The multi-fluid plasma algorithm
is implemented in a flexible code framework (WARPX) that
allows easy extension of the physical model to include multiple
fluids and additional physics. The code runs on multi-processor
machines and is being adapted with OpenCL to many-core
systems, characteristic of the next generation of high performance
computers. The algorithm is applicable to study advanced physics
calculations of plasma dynamics including magnetic plasma con-
finement and astrophysical plasmas. The discontinuous Galerkin
method has also been applied to solve the Vlasov-Poisson kinetic
model. Recently, a blended finite element algorithm has been
developed and implemented which exploits the expected physical
behavior to apply either a discontinuous or continuous finite
element representation, which improves computational efficiency
without sacrificing accuracy.

I. INTRODUCTION

Owing to the complexity of plasma phenomena, a thorough
understanding requires validated physical models, verified
computational simulations, and well-diagnosed experiments.
This paper focuses on developing computational methods for
plasma models with sufficient physical and numerical fidelity
to generate insight and predictability.

II. CONTINUUM PLASMA MODELS

Discrete models that account for each constituent particle
are not particularly useful for the numerical treatment of realis-
tic plasmas where the number of particles (N ) and the number
of interactions (> N2) are not computationally tractable.
Instead an ensemble average is performed to give a statistical
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description. Plasmas may be most accurately modeled using
kinetic theory, where distribution functions, fs(x,v, t), are
governed by a Boltzmann equation
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for each species s, e.g. ions, electrons, neutrals. Combined
with Maxwell’s equations, the system leads to the continuum
kinetic plasma model, as well as the particle kinetic plasma
model. Kinetic models, in their most general form, are six-
dimensional, but reduced models with limited dimensionality
can also be meaningful, e.g. gyrokinetic. Further reduced
plasma models result by taking moments over velocity space
of Eq. (1) and of fs, which gives the multi-fluid plasma model.
[1]

The principal variables for each species of the multi-
fluid plasma model are derived by computing moments of the
distribution functions.
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The 5M model directly evolves the variables given by
Eqs. (2,3) and the tensor contraction of Eq. (4),

ps = ρsTs =
1

3
ms

∫
w2fs(v)dv, (6)

where Ts is the temperature. The 13M model [2] directly
evolves the variables given by Eqs. (2,3,4), and the tensor
contraction of Eq. (5),
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The system of moment equations is truncated, retaining only
variables with a physical meaning. Higher moment variables
that appear in the evolution equation are related to lower
moment variables.

The multiple fluids are coupled to each other and to the
electromagnetic fields through Maxwell’s equations and inter-
action source terms, such as the Lorentz force. Including elastic
scattering and reacting collisions (e.g. ionization, recombina-
tion, charge exchange) introduces additional source terms that



TABLE I. TYPICAL TIME SCALES (IN SECONDS) FOR LABORATORY
AND IONOSPHERIC PLASMAS SHOWING THE LARGE SEPARATION.

Laboratory FRC Ionosphere F Region
1/ωpe 5× 10−14 6× 10−8

L/c 3× 10−9 7× 10−2

1/ωci 10−8 4× 10−3

L/vA 10−5 3× 101

L/vTi 4× 10−5 104

τeq 10−3 105

couple the fluids. For example, the governing equations for the
electron fluid for an interacting three-fluid model (electron, ion,
neutral) is given by

∂ρe
∂t

+∇ · (ρeue) = meΓ
ion
i −meΓ

rec
n (8)

∂ρeue
∂t

+∇ · (ρeueue + peI + Πe) = −Rie
i + Ren

e

− ρee

me
(E + ue ×B) +meunΓion

i −meueΓ
rec
n

(9)

∂εe
∂t

+∇ · (((εe + pe) I + Πe) · ue + he) = Qiee +Qene

−Qrec
e +

me

mn
Qion
n − ue ·

(
ρee

me
E + Rie

i −Ren
e

)
−1

2
mev

2
eΓrec

n +

(
1

2
mev

2
n − φion

)
Γion
i

(10)

where the source and sink rates are computed by the appro-
priate convolution integrals, such as the ion source rate from
electron impact ionization with neutrals

Γion
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∫
fn(v′)

∫
fe(v)σion (|v − v′|) |v − v′| dvdv′.

(11)
See Ref. [3] for the details of the 5M multi-fluid plasma model.
Additional moment models can be found in Refs. [4]–[7].

The governing equations for the 5M or 13M model can be
expressed in balance law form as

∂

∂t
q +∇ · F = S, (12)

where q is the vector of conserved variables, F is the flux
tensor, and S is vector of source terms. Combining the fluid
eigenvalues computed from the flux Jacobian (∂F/∂Q) with
the characteristics of Maxwell’s equations and of the source
terms provides the characteristic speeds and frequencies, and
thereby the time scales given by the plasma model. Table I
shows typical values for a laboratory FRC plasma and an
ionospheric plasma in the F region. The large separation of the
physical time scales makes the equation system mathematically
stiff, which can complicate an accurate numerical solution.

III. FINITE ELEMENT METHODS

Finite element (FE) methods offer high-order spatial accu-
racy in an unsplit approach that tightly couples the flux and
source terms in Eq. (12). High-order accurate FE methods are
appropriate for problems that have strong anisotropies, com-
plicated geometries, or stiff governing equations. Magnetized
plasma simulations of realistic devices using the continuum
kinetic or the multi-fluid plasma models are examples that

Fig. 1. Schematic representation of a discontinuous, high-order solution
within each element Ω having continuous fluxes.

benefit from high-order accuracy. The general approach of
FE methods expands the solution vector using a set of basis
functions, vk(r).

q(r) =
∑
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qkvk(r) (13)

The governing equation is then projected onto test functions
using a Galerkin method as∫
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where an integral equation is generated for each basis (test)
function. Integrating by parts and applying the divergence
theorem gives∫
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This equation is valid in general but is inconvenient for realistic
domains with complicated geometries. Instead, the domain is
divided into finite elements, and the integral equation is applied
to each element with some assumption of continuity at the
element boundaries.

If the solution is assumed to be continuous (C0), the fluxes
are automatically continuous, and the result is the usual finite
element method. During assembly of the global system for the
simultaneous solution for all qΩ

k , the surface integral term in
Eq. (15) cancels everywhere except at the domain boundaries.
Volume integrals are evaluated by quadrature. The continuous
FE method works well for many elliptic and parabolic systems
on complicated geometries; however, spurious oscillations can
occur at discontinuities (shocks) for hyperbolic systems, which
means the method is not suitable for many plasma simulations.

If the solution is allowed to be discontinuous, but with
continuous fluxes, which is the only feature required by the
conservation law, the resulting finite element system is the
discontinuous Galerkin (DG) method. [8], [9] See Fig. 1 for
a schematic representation of the DG method. Fluxes in the
surface integral term in Eq. (15) are evaluated using an upwind
method such as an approximate Riemann solver [4], [10] with
solution values on either side of the interface.
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Limiting is accomplished by locally reducing the expansion
order. Time is advanced using a Runge-Kutta method, for
example the third-order, TVD method. [11]



Fig. 2. Evolved solutions for the electrostatic ion cyclotron waves with
different orders of accuracy with approximately equivalent effective resolution:
2nd order finite volume method with 100 cells, 3rd order DG method with 33
elements, 16th order DG method with 6 elements, and the analytical solution.
The inset shows the details around the highest peak.

The DG method has been implemented in a flexible
code framework, WARPX (Washington Approximate Riemann
Plasma code), that simplifies extension of the physical model.
[1] Exercising the DG method within WARPX has been
successful for modeling plasma phenomena using the two-
fluid and MHD plasma models. [9], [12]–[15] The code runs
on multi-processor machines using MPI and on many-core
and GPU systems using OpenCL. The algorithm is applicable
to study advanced physics calculations of plasma dynamics
including HEDP, magnetic plasma confinement, and astrophys-
ical plasmas.

IV. NUMERICAL RESULTS

A motivation for high-order accuracy is the unsplit cou-
pling of the hyperbolic fluxes and the source terms represented
in Eq. (12). The benefits are demonstrated by the propagation
of electrostatic ion cyclotron waves and by equilibrium calcu-
lations. [14] The electrostatic ion cyclotron waves are highly
dispersive with an analytical solution given by

ux(x, t) = −
∞∑
n=0
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n = k2

nc
2
s + ω2

c and u0 is the initial wave amplitude.
The solution is computed using the DG method in WARPX
with different orders of basis functions but maintaining ap-
proximately equivalent effective resolution, i.e. the number of
unknowns is constant, 2nd order finite volume method with
100 cells, 3rd order DG method with 33 elements, and 16th

order DG method with 6 elements. The results are shown in
Fig. 2. Higher order solutions better match the analytical result
with the 16th order solution closely following the analytical
solution even with only 6 elements. The discrepancies in the
solutions are clearly seen in the inset of Fig. 2.

High-order accuracy is also important for preserving
anisotropies, which often occur in plasmas. Plasmas are of-
ten strongly magnetized which produces strongly anisotropic
transport properties. One example is thermal conductivity
can have a ratio of parallel to perpendicular conductivities

of 106. The effect has been investigated using a high-order
finite element method to solve the anisotropic heat conduction
equation.

∂T

∂t
+∇ · (−D · ∇T ) = 0 (18)

where D = D||(x, y, z) + D⊥(x, y, z). The problem is ini-
tialized in 3D with a Gaussian temperature profile aligned
with a toroidal magnetic field. The diffusivities are set with
D|| = 1 and D⊥ = 0. Numerical solutions are found
for varying number of elements and for varying order of
the basis functions. The numerical solutions are analyzed to
determine an effective D⊥. Results show the expected behavior
of decreasing D⊥ as spatial resolution is increased with either
smaller elements or higher order basis functions. Even for
equivalent effective resolutions, higher order is better able to
preserve anisotropy. Details of this investigation are described
in Ref. [16].

The DG method has been applied to solve the Vlasov-
Poisson kinetic model (collisionless Boltzmann) to demon-
strate accurate, validated results. The solution of the continuum
kinetic model has been benchmarked to weak and strong
Landau damping and to the two-stream instability of Cheng
and Knorr. [17] Figure 3 shows the simulation results at a
normalized time of ωpt = 60. The simulation uses a grid of
20×80 elements using 7th order polynomials in (x, vx). Note
the high-order representation accurately captures the striations
the occur in phase space as the solution develops.

Since the advanced plasma models solved in the approach
described above are coupled to Maxwell’s equations, fast
waves may propagate to domain boundaries and cause unphys-
ical reflections. The fast waves are also indicated in Table I.
Several techniques have been developed to address wave inter-
actions with the boundary. The Calderon projection technique
exhibits high accuracy without increasing the domain size.
[18] This method is particularly useful when external magnetic
fields are applied that vary slowly compared to the plasma
dynamics.

To treat open boundaries without generating non-physical
reflections, non-local boundary conditions must be employed.
Simpler methods work for normal incidence waves, but waves
with oblique incidence can be problematic. Lacuna-based
methods append an auxiliary domain and replace the open
boundary with an interface matching condition. For the math-
ematical details and a thorough review of the method, see
Ref. [19]. The solutions between the interior domain and the
auxiliary domain are smoothed with a transition function. See
Fig. 4 for an illustration of the domains. Waves propagate out
of the interior domain without reflecting or returning.

The governing equation in the interior domain is expressed
as given by Eq. (12), while in the auxiliary domain the
governing equation is defined as

∂w

∂t
+∇ · F(w) = S(w) + Ω(q) (19)

where w = µq and µ = µ(x) is the transition function,
again see Fig. 4. The “transition region” source term Ω(q)
is determined to guarantee that the interior solution matches
the exterior solution at the interface. Namely,

Ω(q) = ∇ · F(µq)− S(µq)− µ∇ · F(q) + µS(q) (20)



Fig. 3. Evolution of the strong Landau damping using 7th order discontinuous
FE representation which accurately captures the fine-scale striations that
develop in phase space.

Fig. 4. Illustration for the lacuna-based boundary conditions. The original
(interior) domain is appended with an overlapping auxiliary domain that
transmits waves without reflections.

The boundary condition for the interior solution q is set such
that

q|−interface = w|+interface (21)

The auxiliary solution is periodically re-integrated to damp the
solution before it reflects and contaminates the solution at the
interface.

Lacuna-based methods work for oblique incidence waves
in either purely hyperbolic or mixed hyperbolic/parabolic sys-
tems. [20] The method even works in 2D where no true lacunae
exist. (Huygens’ principle states true lacunae only exist in odd
dimensional space.) The performance is demonstrated in the
numerical results shown in Fig. 5. The cylindrical propagation
of an electromagnetic wave intersects open boundaries on the
lower and left edges of the domain. The figure shows the
combined interior and exterior domains on the left and only
the interior domain on the right. The wave smoothly exits
the interior domain and decays before interacting with the
boundary of the exterior domain. No artificial reflections are
generated even from the wave that is incident oblique to the
boundary.

V. CONCLUSIONS

Plasmas are accurately described with continuum models:
from detailed kinetic models to 5M and 13M moment models.
This paper highlights developments in high-order techniques
for solving these systems of equations so as to create high-
fidelity methods that are better able to capture complex
plasma physics phenomena. Coupling these models to high-
order spatial representations leads to numerical algorithms that
capture appropriate physical phenomena. High-order accuracy
is important to capture the delicate balance of fluxes and
sources in advanced plasma models and the large anisotropic
character in magnetized plasmas. The discontinuous Galerkin
FE method has been implemented into the WARPX code and
has been validated to analytical results and benchmarked to
published computational results.
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