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Abstract 
 
A unified model is proposed for the fundamental behavior of turbulent entrainment over a 
broad class of flows.  The entrainment velocity is expressed as the ratio of a relevant length 
scale to a time scale for all flows, a generalization of the original entrainment hypothesis of 
Morton, Taylor, & Turner.  This generalization appears to bring the theoretical effects of 
acceleration, compressibility, confinement, rotation, stationarity, and stratification in accord 
with observation.  
 
 
Introduction 
 
Turbulence has been called the most important unsolved problem in all of classical physics.  
From astrophysics to oceanography, aeronautics to combustion, turbulence is ubiquitous.  
Yet in spite of its central role in science and engineering, turbulence has defied solution for 
over a century.   
 
The most important property of turbulence is entrainment.  Both transport and mixing in 
turbulent flows are controlled by entrainment.  Boundary layer heat transfer and skin friction 
are the transport of energy and momentum at a wall.  The vertical transport of water and 
energy in the atmosphere and ocean are determined by stratified entrainment.  In high 
Reynolds number flow, the mixing is entrainment-limited, so much so that the molecular 
diffusivity can change by three orders of magnitude while the molecular mixing rate changes 
by only a factor of two.  Entrainment determines most of what we really want to know about 
a turbulent flow. 
 
 
Entrainment hypothesis  
 
Half a century ago, Morton, Taylor, & Turner (1956) proposed the most successful 
hypothesis for entrainment.  In order to model a thermal rising from the sudden release of 
buoyant fluid, they argued on dimensional grounds that the local entrainment velocity v

e
 into 

the thermal at any station must be proportional to the rise speed W  of the thermal at that 
station.  There is simply no other speed available on which to base the entrainment velocity 
(see figure 1).  In this way, the thermal grows linearly with height, in accord with 
observation.  Furthermore, their hypothesis is equally valid for a wide variety of other 
classical flows that might be termed “ordinary turbulence,” correctly accounting for the 
entrainment rate in the plume, shear layer, jet, wake, etc.   
 
However, the entrainment hypothesis sometimes fails.  For example, when the speed of 
sound becomes comparable to the velocity jump across a shear layer, the entrainment rate 



precipitously declines by a factor of five (Papamoschou & Roshko 1989).  This cannot be 
explained by the original entrainment hypothesis.  The entrainment rate is also strongly 
affected when acceleration, confinement, rotation, or stratification become appreciable. This 
paper is an attempt to extend the entrainment hypothesis into a more general theory.    
 
 
Entrainment process 
 
Entrainment was thought to be a small-scale nibbling process at the edge of a turbulent 
region.  Corrsin & Kistler (1955) proposed a “superlayer” there, across which fluid was 
thought to be entrained by small-scale nibbling.  Shadowgraph images of the supersonic 
round wake of a projectile seemed to support this notion.  However, shadowgraph images of 
the plane shear layer revealed the engulfment of large tongues of fluid by the largest vortices 
in the flow (Brown & Roshko 1974, Roshko 1976).  The two-dimensional geometry of their 
shear layer allowed a more clear view of the entrainment process.  Instead of polite little 
nibbles, their images revealed that the turbulence really entrains like a hungry teenager taking 
big gulps of fluid.  These large engulfed tongues of pure, unmixed fluid are transported by 
the large-scale vortices entirely across the layer (Konrad 1976). 
 
 
Entrainment rate 
 
The entrainment rate v

e
 is a velocity.  From dimensional considerations, it must therefore 

always be expressible as the ratio of a relevant length scale to the rotational period !
"

 of the 
eddy responsible for entrainment.  If there is engulfment, then the relevant length scale must 
be the size! of the entraining eddy.  
 

v
e
= const.

!

"
!

.       (1) 

 
Of course, the dimensional argument cannot establish the value of the constant of 
proportionality.  If there is no engulfment, such as at a solid wall or at a strongly stratified 
interface, the length scale must be a diffusive one, the square root of the product of the 
diffusivity and an eddy time. 
 
For ordinary, incompressible, free shear flows, the entrainment rate must be proportional to 
the ratio of the size of the largest eddies to their rotation period.  This is a direct consequence 
of Roshko’s engulfment, whereby the first step of engulfment by the largest eddies is rate-
limiting.  The subsequent processing of the engulfed fluid by all smaller eddies is both 
proportional to and sufficiently fast compared to the largest eddies that only the largest 
eddies matter.  Since the largest eddies control the rate, we do not need to know much about 
anything else. This happy circumstance vastly simplifies matters, such as modeling the 
mixing (Broadwell & Breidenthal 1982). 
 
So for such flows equation (1) becomes  
 
 



   v
e
= const.

!

"
!

,       (2) 

 
where the subscript !  is the size of the largest eddies.  Since the characteristic velocity of the 

turbulent flow is also proportional to !
"
!

, we recover the Morton et al. entrainment 

hypothesis for ordinary turbulence.   
 
As indicated above, equation (2) does not always work.  Let us now consider the various 
violations of the entrainment hypothesis.  
 
 
Acceleration 
 
Like people, ordinary vortices slow down as they age.  That means that the rotation period of 
the largest eddies !

"
 increases with time t.  In self-similar turbulence, there is no other 

distinguished time scale, so the period must be proportional to the age of the vortex from its 
virtual origin.   
 

!
"
(t) = const.t        (3) 

 
For all ordinary turbulence, the constant of proportionality is positive, as is confirmed by 
examination of the observed growth laws of these flows.  Their rotation period always 
increases with age.  These flows are termed “unforced”. 
 
Note that the vortex rotation period in an unforced flow may not exactly follow equation (3) 
over a short time interval.  For example, the large-scale vortices in the free shear layer obey 
equation (3) in the long term, but on time scales less than the pairing time, a vortex does not 
necessarily follow (3).  We will ignore this subtlety here. 
 
 
forced turbulence 
 
However, it is possible to force the flow in such a way that the rotation period does not 
increase with age.  Define an acceleration parameter !  such that 
 
   !
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where !

0
 is the large-eddy rotation period at the arbitrary time t = 0 .  For ordinary, unforced 

turbulence, ! < 0 .  If the flow is forced, !  can be zero or even positive. 
 
 
temporal self-similarity 
 



The vortices are temporarily self-similar if their next rotation period is proportional to their 
last one.  Otherwise there would be a special, distinguished time scale, a contradiction of 
self-similarity.  Figure 2 illustrates the evolution of the rotation period of temporally self-
similar turbulence.  The line must be straight and !  must be a constant.  For all ordinary, 
unforced turbulence, ! < 0  and slopes upward.   
 
 
exponential jet 
 
The line is horizontal if the next rotation period is the same as the last (! =0).  This can 
achieved in an exponential jet, where fluid is ejected from a nozzle with a speed V

J
(t)  that 

increases exponentially in time, 
 

V
J
(t) = V

J 0
e

t
!
e ,       (5) 

 
where V

J 0
 is the nozzle speed at t = 0 .  Because of this forcing, every large-scale vortex in 

the exponential jet rotates with the same period, equal to the e-folding time !
e
 imposed on 

the flow, no matter how old or how far from the nozzle.  The vortices never age.  It is a kind 
of perpetual youth.   
 
Remarkably, acceleration reduces the normalized entrainment rate.  A convenient way to 
measure entrainment at large Reynolds number is with a fast chemical reaction that destroys 
a visible chemical in the nozzle fluid when mixed with the ambient fluid.  If the mixing is 
entrainment-limited, changes in the visible “flame length” reflect changes in the normalized 
entrainment rate.  Compared to the ordinary jet, the exponential jet has about a 20% greater 
flame length (Kato et al. 1987).  In fact, such acceleration is the only known method for 
affecting the far-field entrainment rate of the incompressible jet, as noted by Zhang & Johari 
(1996).  Their detailed images of jets with modulated nozzle speed demonstrate that 
acceleration only influences the entrainment rate when the imposed change in velocity during 
one vortex rotation is comparable to the initial velocity.  In other words, the logarithmic 
derivative must be appreciable. 
  
 
super-exponential forcing 
 
The third category is the line sloping downward in figure 2 (! >0).  In spite of getting older, 
the vortices spin ever faster.  After a finite time, the spin rate becomes infinite and the 
rotation period vanishes. 
 
One might anticipate that the entrainment rate would be further reduced as !  increases.  
Using dimensional and heuristic arguments, one theory has been proposed (Breidenthal 2003 
with different notation).  The dimensions of the dissipation rate per unit mass are 
(length)2(time)-3.  Every canonical turbulent flow has a conserved quantity Q.  For example, 
in the shear layer, it is the velocity difference !U .  If the dimensions of Q are in general 



(length)m(time)-n, the dissipation rate is proportional to Q
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For super-exponential forcing, 
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where Q

0
 is the value of Q  at t = 0 . 

 
Define D  to the dissipation rate normalized by that of the unforced flow.  From heuristic 
grounds, we conjecture that the quantity  is the natural scaling of effect of !  on D .  If so, 
then 
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where !"  is the value of !  for the unforced flow. 
 
 
 
 
Compressibility  
 
It has long been known that a compressible flow grows more slowly than an incompressible 
one.  Papamoschou & Roshko (1989) found that the spreading angle of a turbulent shear 
layer dropped by a factor of about five as the Mach number increased.  Linear stability theory 
may provide an indication of the entrainment behavior, since the underlying instabilities 
drive the basic flow.  However, the indication can only be qualitative, in as much as the finite 
amplitude eddies are fully nonlinear. 
 
Bogdanoff (1983) recognized that the important parameter for the instability is a 
“convective” Mach number, the Mach number of the outer flow with respect to the speed of 
the instability waves.  A hint that this is the correct approach comes from the flow models of 
Brown (1974), Coles (1981), and Dimotakis (1986), discussed below.   
 
One heuristic model that addresses the fully nonlinear flow supposes that nonsteadiness is 
essential to entrainment.  This is a hint of this in the results of the Oster-Wygnanski (1982) 
experiment, where the vortices in a shear layer are forced to be equally spaced.  For a certain 
time, these vortices are steady, resembling Kelvin’s cat’s eye pattern (Kelvin 1880), with no 



vortex pairing.  Remarkably, Oster & Wygnanski found that the Reynolds stresses vanish.  
There is no turbulent transport of momentum.  Roberts (1985) found the mixing rate 
essentially vanishes, in spite of the fact that the vortices are continuing to rotate.  If 
nonsteadiness is required for entrainment, it follows that the signaling speed of acoustic 
waves must control the physics, since the information about a nonsteady event can travel no 
faster than the speed of sound. 
 
There is a subtle point to note here.  Mach number plays two simultaneous and different roles 
in high speed flow (Roshko, private communication).  On one hand, it indicates the signaling 
process above.  It is also a measure of the energy content of the flow, i.e. thermal vs. kinetic.  
Indeed, most attempts to model compressibility have focused on energy and density 
considerations.   
 
The second assumption is that the important time scale for an eddy to entrain is always about 
one vortex rotation.  This is the behavior of the engulfment and mixing process in 
incompressible turbulence (Brown & Roshko 1974).  The immediate consequence of these 
two assumptions is that entrainment is controlled by a “sonic eddy” whose rotational Mach 
number is unity (Breidenthal 1992).  Such an eddy completes one rotation during the 
signaling time across its diameter.  Any larger eddies that might exist would play no role in 
the entrainment process whatsoever.   
 
The hypersonic wake provides a good opportunity for comparison with experiment. The 
model predicts that the initial wake growth rate should be zero, since the large-eddy 
rotational Mach number is greater than unity there.  Only sonic eddies, much smaller than the 
total wake thickness, are capable of transporting momentum.  The time scale for the sonic 
eddies to transport momentum across the entire wake is the square of the wake thickness 
divided by the product of the speed of sound and the sonic eddy size, this product being the 
effective turbulent diffusivity.  Note that the concept of turbulent diffusivity is rarely 
justified. 
 
The initial wake should not grow at all until the rotational Mach number of the largest eddies 
has fallen to unity.  Then the growth rate should transition to the incompressible value.  The 
time for this transition is set by the transport of momentum by the sonic eddies across the 
width of the wake.  Since they are small compared to the width of the wake, the process can 
be modeled by turbulent diffusion, with a diffusivity equal to the product of the speed of 
sound and the size of the sonic eddy.  Note that for most flows, turbulent diffusion is not an 
appropriate model (Corrsin 1974).  Only in the rare circumstance of the entraining eddies 
being small compared with the distance in question is diffusion a reasonable model. 
 
The transition is predicted to occur at a downstream station of M2d, where d is the effective 
body diameter.  At M = 20, this would be 400 effective body diameters downstream, which is 
in accord with shadowgraph observations (Finson 1973). 
 
 
Confinement and mixing 
 
When engineers mix chemicals together, they usually want to retain the mixture in a confined 
chamber.  Examples include combustion and chemical processing.  So we will generalize the 



term entrainment here to include the entire physics of transport and molecular mixing in a 
confined vessel.   
 
Consider the probability density function (pdf) for the concentration of an inert scalar mixing 
with a second fluid in some general flow sketched in figure 3.  Initially the pdf consists of 
two delta functions at the extrema, corresponding to the two pure fluids.  As the turbulence 
mixes some of the two pure fluids together at intermediate concentrations, forming a central 
Gaussian in the pdf.  For a self-similar free shear layer with two infinite supplies of pure 
fluid, the pdf would reach a steady state (Konrad 1976, Broadwell & Breidenthal 1982).  
However, if only one fluid supply is infinite, such a finite jet injected into an infinite 
reservoir, then eventually there is only one delta function in the pdf.  If both fluid supplies 
are finite, then the two delta functions both disappear, and the pdf consists of a central 
Gaussian, the width of which is the rms concentration fluctuation.  As the turbulence further 
mixes the fluid, the Gaussian progressively narrows and the fluctuations decline.  
 
Here the simplest two assumptions are that both the flow and the mixing are self-similar 
(Breidenthal et al. 1990).  The former requires that the vortex rotation period is proportional 
to its age, as we have seen above.  The latter implies that the concentration fluctuations 
decline by a factor of e at each rotation.  The simple result is that the concentration 
fluctuations should be proportional to a characteristic time scale !  divided by time. 
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The characteristic time scale is determined by dimensional considerations of the problem.  
For example, if one fluid is initially in a spherical chamber and a second fluid is momentarily 
injected into the chamber, !  depends on the jet impulse and the chamber diameter.  The 
characteristic time !  must also equal the vortex rotation period at the moment t = !  when all 
pure fluid has disappeared and the large-scale vortices have filled the chamber.  
Measurements of concentration fluctuations are consistent with (6), in spite of the fact that 
the actual vorticity field appears to decay exponentially instead of as inverse time (Aarnio 
1994).  
 
 
Density ratio 
 
The coherence of large-scale structure in turbulence was discovered by accident.  Brown & 
Roshko (1974) were attempting to find out about the compressibility effects on entrainment.  
It was known that supersonic jets exhibited an anomalously low spreading angle.  It was not 
clear if this was due to Mach number or to the density ratio of the supersonic experiments.  
Since density ratio was easier to control, they elected to measure its effect on spreading angle 
in incompressible flow by taking shadowgraph pictures.  While the most important result of 
their experiment was the coherent structure revealed by their pictures, they also determined 
that density ratio has a remarkably weak effect on entrainment rate.  The density ratio must 
vary by a factor of 49 to achieve a factor of two change in spreading angle.  This proved that 
the main influence on jet spreading angle was Mach number. 
 



A simple picture readily accounts for the effect of density ratio on entrainment into a shear 
layer.  Coles (1981) drew the shear layer in the Lagrangian frame of the vortices (see figure 
4).  Fluid enters a vortex from each stream due to the relative speed of the stream with 
respect to the vortex.  Brown (1974) showed that the relative speed ratio comes from 
consideration of the stagnation streamlines.  Assuming quasi-steady inviscid flow, the total 
pressure on both streamlines must be constant and equal.  Furthermore, the streamlines far 
from the stagnation point are quasi-parallel, so that their static pressures must be equal.  The 
result is the dynamic pressures of the relative flows far from the stagnation point are equal.  
So the speed ratio in this frame is just the inverse square root of the density ratio.  Dimotakis 
(1986) neatly summarizes the effects of both density and velocity ratio on both the spreading 
angle and the entrainment ratio from the two sides of the layer. 
 
 
Rotation 
 
Bradshaw (1969) noted that when a fluid rotates, the higher speed fluid tends to want to 
move to the outside of the turn.  This corresponds to a state of lower kinetic energy for the 
same angular momentum.  The difference in kinetic energy between the two states can 
dissipated into thermal energy in accord with the second law.  On the other hand, if the 
higher speed fluid is already on the outside of the turn, a rotating flow acts as if it is 
stratified.  This occurs even when the fluid has uniform density.  This effective stratification 
inhibits entrainment.  
 
Cotel (2002) used Bradshaw’s analogy to explain the remarkable behavior of aircraft trailing 
vortices.  Even many kilometers behind a large aircraft, the wingtip vortices are compact, 
laminar cores of only about a meter in diameter, in spite of the large Reynolds number.  The 
radial transport of momentum is strongly inhibited by the effective stratification due to the 
rotation. 
 
 
Stationarity 
 
When a vortex is near a surface, the motion of the vortex with respect to the surface becomes 
important.  The entrainment rate across the surface depends on the amount of stationarity of 
the vortex.  Even a small amount of vortex movement completely changes the physics. 
 
Cotel & Breidenthal (1997 & 1999) first identified this effect at a stratified interface.  The 
entrainment rate across a stratified interface was much different for an impinging vertical jet 
compared to other turbulent flows, such as from an oscillating grid.  The impinging vertical 
jet entrained fluid across the interface with stationary, lateral vortices, in contrast to the 
moving vortices from an oscillating grid or horizontal jet.   
 
In order to quantify the stationarity, Cotel defined a new parameter.  The persistence 
parameter T is essentially the ratio of the rotational to the translational speed of the vortex 
with respect to the surface (figure 5).  When T is much less than one, the flow is in the 
nonpersistent limit.  When T is much greater than one, the flow is said to be persistent.  For a 
vortex near a surface, there is no more important parameter than this. 
 



Cotel asserted that the surface may be of any type: a stratified interface, a solid wall, or even 
an iso-vorticity contour of a neighboring vortex.  Thus her theory is applicable to a wide 
class of flows. 
 
When a piston suddenly begins to push fluid out of a tube at constant velocity, a starting 
vortex is formed.  The subsequent jet never catches up with this vortex ring (Johari et al. 
1997).  If the piston advances sufficiently far, the starting vortex cannot accept all the 
injected vorticity.  Gharib et al. (1998) defined a “formation number” to be the ratio of the 
stroke length to piston diameter.  The formation number is essentially identical to the 
persistence parameter, as noted by Gharib (private communication 1995).  There is a 
transition in vortex behavior at a critical value of the formation number at about four, when 
the starting vortex ring can no longer accept all the injected vorticity.  This transition is 
important in heart flow. 
 
Another example of persistence is the boundary layer.  When the surface is a solid wall, the 
wall fluxes can be drastically modified by persistence.  In order to achieve the persistent 
limit, strong stationary vortices must be introduced.  This is difficult, since a linear vortex 
near a flat wall is unstable to both short wavelength Widnall (Widnall et al. 1974) and long 
wavelength Crow (1970) instabilities, which would promptly render the vortex nonsteady.  
Balle (Balle & Breidenthal 2002) suggested that vortices could be stabilized by a wavy wall, 
substituting for the dividing streamline in a von Karman wake.  The wake vortices are known 
to be at least quasi-stable.  Balle found the wall flux measured at the bottom of a trough to be 
laminar, as predicted by Cotel’s theory.  Using flow visualization, Dawson (2005) 
subsequently confirmed that an otherwise turbulent boundary layer was indeed made laminar 
by the addition of persistent vortices.  However, she found that a small segment of the wavy 
wall did not achieve laminar flow, due to an adverse pressure gradient in the spanwise 
direction.  It is still an open question if a wall shape can be found that will achieve laminar 
flow everywhere under persistent vortices.  Reducing the heat flux to a laminar value would 
be useful for turbine blades and hypersonic flow. 
 
Surprisingly, Dawson found that the flow pattern did not correspond to the von Karman 
wake.  Instead, it resembled Kelvin’s cat’s eye flow.  As mentioned above, this flow pattern 
always seems to be associated with laminar fluxes.  
 
These discoveries raise interesting questions about the stabilizing effect of stationary vortices 
on the flow.  It seems reasonable that a stationary vortex would not directly hand off energy 
into smaller scale eddies, since that presumably requires some kind of nonsteadiness in that 
vortex.  However, the persistent vortex seems to inhibit instabilities even in neighboring 
vorticity, such as that in the boundary layer below the streamwise vortices.  Recent results by 
Fransson et al. (2005) indicate that streamwise vortices can stabilize Tollmein-Schlichting 
waves.  
 
 
Stratification 
 
Based on the persistence parameter, Cotel (Cotel & Breidenthal 1997) proposed a new model 
for stratified entrainment.  It consists of different entrainment regimes, determined by the 



Richardson, Reynolds, Schmidt, Prandtl, and persistence parameters.  For simplicity, we will 
only consider the limit of a thin stratified interface.  
 
The Richardson number Ri (of the largest eddies) is defined as the ratio of the potential to the 
kinetic energy of the largest eddies at the stratified interface.  One can also define the eddy 
Richardson number Ri

!
of a smaller eddy of size ! .  For a Kolmogorov spectrum, the eddy 

Richardson number increases with eddy size.   
 
If Ri << 1, the potential energy is dominated by the kinetic energy and stratification is not 
important for any eddy.  If Ri > 1, there are at least two possibilities.  Depending on the 
Reynolds number, the smallest eddies at the Kolmogorov microscale !

0
may have an eddy 

Richardson number Ri
!
0

 greater than one.  If so, then they and therefore all eddies have 
insufficient kinetic energy to engulf a tongue of fluid across the interface.  Consequently, in 
this limit of strong stratification the interface must be essentially flat.  All fluxes are purely 
diffusive.  From dimensional considerations, we can define a corresponding effective 
entrainment velocity to be the square root of the ratio of the diffusivity divided by some eddy 
rotation period.  The diffusivity corresponds to the flux in question, i.e. mass, momentum, or 
energy. 
 
There are many choices for the eddy rotation period, ranging from that of the largest to the 
smallest eddy.  Clearly, eddies in the middle cannot be rate limiting, since there is no basis to 
select one over another.  So only the largest or the smallest eddy could be correct.  Cotel 
proposed that in the persistent limit, the correct choice is that of the largest eddy.  
Remarkably, the fluxes would then be completely independent of any fine-scale turbulence. 
 
While this prediction may not yet have been tested in stratified flow, it does seem to work in 
the corresponding wall flow discussed above.  The heat flux is laminar because the persistent 
vortices make the flow laminar. 
 
In the non-persistent limit, the fluxes would be controlled by the smallest-scale eddies, 
corresponding to ordinary turbulent flow.  This is in accord with many observations at 
stratified interfaces and the boundary layer.   
 
If the smallest scale vortices have an eddy Richardson number less than unity, then the 
interface is not flat.  The eddy whose Richardson number is equal to about unity can engulf 
fluid across the interface.  It determines the entrainment rate. 
 
Dramatic evidence of the importance of persistence on stratified entrainment was measured 
by Cotel et al. (1997).  Following a suggestion by L. Redekopp (private communication 
1995), they tilted an impinging jet and precessed it.  The entrainment rate was reduced by 
orders of magnitude compared to that of the vertical jet.  The effect is not only large, but 
counter-intuitive. 
 
 
Conclusions 
 



The entrainment rate of a turbulent flow can always be expressed as the ratio of a length to a 
time scale corresponding to the entraining eddy.  This is a generalization of the entrainment 
hypothesis of Morton, Taylor, & Turner that accounts for a variety of effects, such as 
acceleration, compressibility, confinement, stratification, and stationarity. 
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Figure captions 
 
 

Figure 1. Entrainment velocity ve is proportional to the thermal rise speed W according to 
the entrainment hypothesis (Morton et al.) 

 
Figure 2. Temporal evolution of the vortex rotation period for self-similar flow 
 
Figure 3. Probability density function of the concentration field of a passive scalar is 

composed of contributions from the pure fluid, Taylor layers, and the vortex 
cores (Broadwell) 

 
Figure 4. Sketch of the flow in the shear layer for an observer moving with the vortices 

(Brown, Coles, and Dimotakis) 
 
Figure 5. The intrinsic velocity ratio of a vortex near a surface – vortex persistence T 

=U2/U1 (Cotel) 
 
Figure 6. Cat’s eye flow (Kelvin) 
 
Figure 7. Stratified entrainment diagram in the persistent limit (Cotel) 
 
Figure 8.   Stratified entrainment diagram in the nonpersistent limit (Cotel) 
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