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University of Washington
Abstract

Atmospheric Transit of a Hypersonic, Axisymmetric,
Spin Stabilized Vehicle

by Peter Kaloupis

Chairperson of the Supervisory Committee: Research Professor Adam P. Bruckner
Department of Aeronautics andAstronautics

The atmospheric transit of a hypersonic, axisymmetric, spin stabilized
vehicle is investigated with special attention to stability considerations. The
analysis is valid for general vehicle shapes and Mach number ranges from 10 £ Moo
< c. The particular case study performed is for the Ram Accelerator Mass
Launcher vehicle. It is a chemical mass launcher concept that has been developed at
the University of Washington for accelerating vehicles to velocities as high as 10
km/sec for launch to Low Earth Orbit. The force system acting on the vehicle is
presented in detail, including Magnus and ablation side forces, and the full six
degree of freedom equations of motion are solved numerically to determine the
stability characteristics of the Ram Accelerator Mass Launcher vehicle. The
Embedded Newtonian theory is used to determine the steady and non-steady
aerodynamic characteristics of the vehicle for various configurations. An analysis
of the heat transfer to the vehicle is performed for radiative and convective heating,
with special attention to the effects of ablation on vehicle stability. It is shown that
the current configuration of the Ram Accelerator Mass Launcher vehicle is
dynamically unstable and cannot be spin stabilized. Recommendations are made for

a more stable vehicle design.
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Chapter 1

Introduction

1.1 Background

The problem of determining the motion of a projectile through the
atmosphere has been studied by ballisticians for several centuries, but has only
recently received the attention of aerodynamicists. Early studies of projectile
motion had failed to realize the magnitude of the aerodynamic forces, in particular
the drag, and included only the effects of the force of gravity. Thus, determinations
of projectile range and velocity gave large and systematic errors. After the
importance of air resistance was recognized, the fundamental paper of Fowler,
Gallop, Lock, and Richmond [1] became the basis of modern exterior ballistics.

Since then, however, the size of the projectiles and the velocities that they
could achieve have been increasing steadily. Projectiles gave way to larger
vehicles, whose aerodynamic characteristics included lift and thrust forces, and in
the case of spinning vehicles Magnus forces as well. These new vehicles required
new techniques for determining the forces, and more thorough investigations were
performed - most notably by McShane, Kelley, and Reno [2], and Davis, Follin,
and Blitzer [3], who give an excellent treatise on the subject. However, as the
Mach number increased, the techniques of these authors failed to accurately predict
the aerodynamic coefficients. The velocities of the vehicles studied by these
authors, typically less than 1500 m/sec, are still moderate by today's standards. As
the upper velocity limit increased into the high supersonic and hypersonic regimes,
the problem of determining the aerodynamic characteristics for the vehicle motion
became more and more complicated. With hypersonic vehicle technology
increasing in importance in a variety of applications, such as future space
transportation systems, hypersonic transports, and re-entry vehicles, the problems
associated with hypersonic flight gained more attention.



(3]

The characteristic problems of hypersonic flow are the hydrodynamic
effects due to the high Mach number, and physical effects due to the large energies
associated with the flow. Hydrodynamic problems include the nature of the flow
field in the inviscid region, which can no longer be considered isentropic and
irrotational because of the large entropy gradients through the strong bow shock.
In addition, the inviscid flow region is greatly reduced because of the thicker
boundary layers and the nearness of the shock to the body. Physical problems are
associated with the high temperatures generated by the strong shocks. In this
regime air no longer behaves as an ideal gas, and the effects of heat transfer to the
vehicle cannot be neglected.

At hypersonic Mach numbers the effects of viscous aero stresses give rise to
finite thickness shock layers which further complicate the analysis, and the effects
of mass addition into the boundary layer due to ablation of the surface can
significantly alter the aerodynamic characteristics of such vehicles. Effects such as
Magnus forces and ablation side forces in turbulent flow need to be considered, and
it is these special considerations at the hypersonic Mach numbers, and how they
affect vehicle motion, that are being considered here.

1.2 Present Work

Many types of external vehicle configurations exist for atmospheric transit.
These include finned vehicles that employ aerodynamic surfaces for stability and
control, as well as axisymmetric configurations that rely on spinning for stability.
They may be lifting bodies, and may include thrust forces. This thesis will restrict
itself to the case of an axisymmetric, hypersonic, spin stabilized vehicle flying at
some angle of attack, with no thrust force, operating in the Mach number range
10 € Moo < 30. The treatment is analytical and semi-empirical in nature, and does
not require the extensive computing time associated with computational fluid
dynamic techniques. The method presented here is well suited for the present stage
of the analysis. Methods of solution for finding aerodynamic coefficients will be
presented with justification, and the six degree of freedom equations of motion will
be given with a discussion of the forces and moments acting on the vehicle with
varying Mach number and angle of attack. Although the analysis is general and is
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amenable to any hypersonic axisymmetric vehicle, the particular case study
performed is for the Ram Accelerator Mass Launcher vehicle.

The Ram Accelerator is a chemically propelled mass driver which is being
presented as a viable new approach for directly launching acceleration insensitive
materials into low Earth orbit [4-6]. It is a ramjet-in-tube concept developed at the
University of Washington that provides a unique method for accelerating vehicles to
velocities as high as 10,000 m/sec [7-12]. The external configuration of such a
vehicle is predetermined by the necessary requirements for the propulsive cycles it
must undergo, and it consists of a conical forebody, a cylindrical midsection, and a
truncated cone boatail, as shown in Fig. 1. This thesis, however, will restrict itself
to the case of a conical nose with a cylindrical afterbody and no boatail, also shown
in Fig. 1, since the present technique of determining aerodynamic coefficients
cannot account for negative body angles. The effects of boatailing on stability will
be discussed qualitatively in Chapter 7.

$

L/d=10.0
Xeg /L= 0.7
rn/rb=0.13

$

Figure 1. Vehicle Configuration
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Chapter 2 discusses the pertinent reference frames for the analysis, and

gives the required equations of motion. The force system and moments acting on
the body are presented in Chapter 3, with a qualitative discussion of the forces.
Chapter 4 presents the methods selected for determining the required aerodynamic
coefficients for solving the equations of motion, and discusses their justification.
Chapter S details the effects of aerodynamic heating to the vehicle, both radiative
and convective, as well as the effects of ablation on vehicle motion and stability.
The stability conditions and constraints for spinning vehicles are presented in
Chapter 6, and the results of the analysis are presented in Chapter 7 with a
discussion of the effects of configuration changes. Conclusions and

recommendations are made in Chapter 8.



Chapter 2

Reference Frames and the
Equations of Motion

When solving for the atmospheric transit of a vehicle, a number of reference
frames are important for specifying relative positions and velocities. The reference
frames used in this analysis are defined below, with an explicit definition of the
Earth fixed inertial frame required for determining the equations of motion. The
derivation of the six degree of freedom equations of motion is performed by Etkin
[13], and the results are presented here.

2.1 Reference Frames

In many problems of atmospheric transit the rotation of the Earth and its
curvature may be entirely neglected. However, in the case of hypervelocity
problems, although we can neglect the Earth's rotation in the moment equations, it
must be included in the force equations for accurately determining vehicle motion.
The justification for this is given in Chapter 3, where the force system is presented
in detail. Here it is sufficient to simply state this in order to select an inertial frame
of reference.

The natural choice of inertial frames for problems where the rotation of the
Earth is deemed important is shown in Fig. 2. It is denoted Fg and it is a
coordinate system whose origin lies at the mass center of the Earth, and whose axes
are fixed by a reference point on the equator and the Earth's axis. At this point it is
convenient to introduce the vehicle carried vertical frame Fy also shown in Fig. 2.
It is attached to the vehicle center of mass, and is oriented such that the z axis points
vertically downward in the radial direction and coincides with the g vector. The
relative position of the vehicle frame to the Earth frame can be given by two angles,
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A and p, which are the latitude and longitude of the point where the z axis of the

vehicle frame intersects the Earth's surface. The axis of the Earth is fixed in inertial
space, and the Earth rotates about it with some angular velocity wE.

Figure 2. Earth Fixed and Vehicle Fixed Reference Frames

The body axes frame Fp has its origin at the vehicle mass center, and is
aligned with the vehicle plane of symmetry and the principal axes, with the z axis
pointing downward. The body axes system is shown in Fig. 3 and has the notation
shown associated with it. The body axes rotate with the vehicle with an angular
velocity of (p,q,r) and translate with respect to the inertial frame with the velocity
(u,v,w). The orientation of the body axes frame relative to the vehicle vertical
frame can be given by three consecutive rotations about the axes z,y, and x as
shown in Fig. 4. They are a rotation y about the z axis, a rotation 6 about the y
axis, and a rotation ¢ about the x axis. These are the Euler angles that bring the two
frames into coincidence, and are important for determining the components of the

aerodynamic forces.



L = Roll Moment p = roll rate
M = Pitch Moment g = pitch rate
N = Yaw Moment r = yaw rate
Z,w
(X,Y,Z) = Aerodynamic Forces
(u,v,w ) =VYelocity Vector
Figure 3. Body Fixed Reference Frame with Associated Notation

Figure 4. Vehicle Euler Angles for Body Axes Co-ordinate System
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Given the body axes frame we can also define two aerodynamic angles, the
angle of attack and the sideslip angle, which are defined in this coordinate system

as:
= pan-l W
o=tanty 2.1.1
= 'ly—
p=sin’y 2.1.2
Then the velocity components with respect to these angles can be written:
u=VcosBcosa 2.1.3
v=Vsin B 2.1.4
w =V cos B sin o 2.1.5

Any vector within a particular reference frame may be given in any other
frame by undergoing a rotation under a transformation matrix, and thus with the
reference frames defined we can proceed to write the equations of motion.

2.2 Equations of Motion

The equations of motion provide the mathamatical model which describes
the general motion of the vehicle. With knowledge of the rate of change of
momentum, rate of change of angular momentum, and the aerodynamic forces, we
can write down the equations of motion. There are two sets of fundamental
equations, the force equations and the moment equations. The force equations can
be found from the requirement that the sum of external forces in a given direction is
equal to the time rate of change of translational momentum in that direction, and the
momentum equations are found from the requirement that the sum of external
moments in a given direction is equal to the time rate of change of the angular
momentum in that direction.We can write for the force equations:

X-mgsin@=m[iu+(@§+qw-E+r)v] 2.2.1
Y +mgcosOsing=m [V + (t§ +1) u- (p§ + p) w] 2.2.2

Z+mgcosOcosp=m[w+(pE+p)v-(gE+q)u] 2.2.3



where the terms with the superscript E denote quantities associated with the rotation
of the Earth. The moment equations may be written for a rigid body with principal
axes and axisymmetric symmetry as:

L=1Ip 2.2.4
M= YQ-(IZ-IX)rp 2.2.5
N=Lri-(Ik-I)pq 2.2.6

where Ix, Iy, and Iz are the principal moments of inertia.

So far we have said nothing about the aerodynamic forces X,Y, and Z that
appear in the above equations. The forces on the vehicle depend on the local
density of the air and the local motion of the vehicle relative to the atmosphere,
hence on u,v, and w. These forces will be discussed in detail in the following
chapter, and their components in the x, y, and z directions can then be substituted in
for X, Y, and Z by applying the transformation matrix. A similar analysis can be
done for the moment equations. The complete list of simultaneous equations that
need to be solved for the vehicle motion are presented in Appendix A.



Chapter 3

Force System

As the vehicle transits the atmosphere it will experience forces and moments
acting upon it. All we need to know to characterize these forces and moments is the
mass distribution of the vehicle. Its center of mass, its radius of gyration about the
center of mass, and the relevant forces that are acting on the vehicle must be
known. These forces can be divided into two distinct classes, those due to
gravitational and non-inertial reference frame accelerations and those due to

aerodynamic forces, caused by the movement of air about the vehicle.
3.1 Gravitational and Coriolis Forces

It is obvious that, when writing the force vector for atmospheric flight, the
weight mg must be considered as a contributing factor. It is somewhat less
obvious what contribution the centripetal acceleration, the rotation of the Earth, and
the Earth's curvature make to the force vector. A number of equations that describe
the acceleration of the vehicle center of mass with respect to the inertial frame can be

presented. The accelerations include:

1) the acceleration of the mass center relative to the moving frame,

2) the acceleration of the mass center due to the rotation of the moving
frame,

3) the centripetal acceleration of the mass center relative to the moving
frame,

4) the acceleration of the origin of the moving frame,

5) and the Coriolis acceleration of the moving frame.

If we examine these terms more carefully we can see the relative magnitude of these
as compared to the weight mg.
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If we consider the vehicle fixed reference frame we can see that the first

three terms will be zero, since the frame is fixed to the vehicle center of mass, and
there are no accelerations of the mass center with respect to the vehicle fixed
reference frame. The two terms left are the acceleration of the vehicle fixed frame
itself and the Coriolis acceleration. The first of these is just the centripetal
acceleration associated with the Earth's rotation. This term varies in magnitude
from zero at the poles to 1/1000 mg at the equator, and can therefore be neglected.
For the Coriolis acceleration we need to look at the z component of the equations of
motion. If we consider Equation 2.2.3 with the Euler angles zero for horizontal

flight at the equator then:

—Z+mg=mV(q§+q) 3.1.1

since v=w =0 and V = u. Then from Equations A.2 and A.8 qfg =- wF and P =
Q =R =0. From Equation A.7 we know that q = - (0F + 1), and A.6 givesp =V

/ R. Hence for the force equation in the z direction we have:

m V2
R 3.1.2

-Z+mg=2mV of +
The first term on the right hand side is the Coriolis force due to the Earth's rotation.
At orbital speed, approximately 7.9 km/sec, it is equal to 1/10 mg. The second
term is due to the curvature of the Earth, and at orbital speed is equal to 9/10 mg. It
is clear that if the gravitational force is to be included in the analysis, then the
Coriolis force must also be included. For low velocities these terms become
negligible, and indeed at speeds that corespond to Mach numbers Moo < 3 at sea
level each term amounts to only 1/100 mg and may be neglected. This argument is
relevant only for the force equations, and has validity only for flight path
calculations. If we are interested solely in attitude dynamics, these terms in the
moment equations become negligible, since the rotation rate of the Earth is entirely
negligible when compared to any practical vehicle rotation.



3.2 Aerodynamic Forces and Moments

The aerodynamic forces arise due to the movement of air over the vehicle.
They can be broken down into pressure forces and viscous forces, and when the
vehicle center of pressure does not coincide with the vehicle center of mass they can
give rise to moments. The forces and moments are discussed in this chapter
qualitatively, and their magnitude will be considered in the following chapter,
where the aerodynamic coefficients will be found in order to solve the equations of
motion. The methods selected for determining the coefficients are presented in this
chapter, with a justification for their use. The aerodynamic forces and moments

that are important in determining vehicle motion are:

D the lift and drag forces and moments,

2) the pitch and yaw moments and damping moments,
3) the Magnus side force and moment,

4) and the ablation side force.

When dealing with an axisymmetric body it is generally more sensible to
speak in terms of normal and axial forces as opposed to lift and drag forces, since
they are aligned with the natural co-ordinate system of the vehicle. They are related
through:

D=Acosa+Nsina 3.2.1
L=Ncosa-Asina 3.2.2
3.2.1 Pressure Forces and Moments

3.2.1.1 Forces

The lift and drag forces are the most important forces that act on the vehicle.
We can determine the magnitude of these forces if we know the pressure
distribution Cp over the vehicle, since we can then integrate the pressure
distribution to find the forces. Determining the forces due to pressure is then
tantamount to finding an accurate representation of the pressure distribution.



13

Various methods exist for finding the pressure distribution about
axisymmetric vehicles. These include the small perturbation method [14], and the
first and second order theories of Van Dyke [15], among others. However, these
are restricted to supersonic Mach numbers and at hypersonic velocities different
techniques must be used for finding the pressure distribution over an axisymmetric
vehicle. The most fundamental of these is the Newtonian impact theory [16],
which assumes that the fluid particles do not interact with each other and that the
only change in velocity of a particle impinging on the body is in the normal
direction to the surface. The normal component of momentum is transferred to the
body, and the particle moves along the surface of the body with no tangential
acceleration. For blunted bodies, or bodies with curved surfaces, it was noted by
Busemann [17] that a centrifugal pressure correction term must be added to account
for accelerations due to the curved particle paths. A central assumption in these
theories is that the Mach number approaches oo, and that y approaches unity.
Further, these theories assume that the shock layer is thin and that the shock lies
close to, or on the body. For hypersonic axisymmetric or blunted bodies this is not
always the case, and a different technique must be used for determining the
pressure distribution over the vehicle.

To remove these limitations Seiff proposed the Embedded Newtonian
technique [18]. In this theory, developed for steady flow, a nonuniform rotational
inviscid flow field is defined downstream of the bow shock, whose shape is
determined by the nose shape and drag coefficient. The pressure on the body is
then determined by generalized Newtonian theory. This method takes into account
the reduction in dynamic pressure and velocity that arise due to the entropy layer
caused byﬁ the bow shock. Ericsson extended this method to include unsteady
effects and large nose bluntness at finite Mach numbers [19-22]. The Busemann
correction to the embedded flow field has been considered by Tong and Hui [23],
but it has been shown that the pressure correction term is overestimated and the
conditions that Mach number is oo and v is unity are not satisfied over most of the
vehicle. In addition, Tong and Hui have employed relationships for velocity and
density ratios across the shock that correspond to the strict Newtonian limit, and
cannot therefore account for finite Mach number dependence.
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The flowfield over the vehicle, except in the immediate vicinity of the
stagnation point, is approximated by a strong curved bow shock whose shape is
determined by nose geometry, together with an inviscid shear flow downstream of
the shock where pressures are determined using simple Newtonian concepts.
Thus, following the recommendation of East and Hutt [24], the method selected for
determining the pressure distribution for current conditions is that of Ericsson [22].
This method provides excellent agreement between theory and experiment for
pressure distributions and stability coefficients at the high Mach numbers of interest

for blunt bodies.

3.2.1.2 Aerodynamic Moments

The lift and drag forces due to the pressure distribution over the vehicle act
through the center of pressure, and when this does not coincide with the center of
gravity, moments are created about the vehicle mass center. These moments are
important in determining the vehicle stability, and are found by integrating the
pressure distribution with respect to some moment arm over the vehicle surface.
The non-steady Embedded Newtonian method of Ericsson provides for finding
these stability coefficients over a broad range of vehicle shapes, attitude, and flow
conditions.

The pitching moment Cp, arises because the normal force on the body does
not act through the center of gravity. On its own it is one of the most significant
contributions to vehicle stability or instability, as will be shown in Chapter 7. In
addition, when the vehicle is pitched it has an increased angle of attack over the rear

portion of the body, which feels a force that induces a moment about the vehicle
center of mass to stop the rotation. This moment is the pitch damping moment Cmq

and for long bodies can be quite large. The total damping moment Cryg is the
moment associated with the pitching rate q, plus the moment due to the effects of
the time rate of change of angle of attack o. The method of finding these moments
about the vehicle center of mass is that given by Ericsson [22] and is presented in
Chapter 4.
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3.2.2 Viscous Forces and Moments

Viscous forces are created by the shear stresses on fluid particles within the
boundary layer. These include Magnus forces and skin friction drag, as well as the
effects of mass introduction into the boundary layer, which alters the velocity
profiles and pressure gradients about the vehicle and can give rise to side forces.

3.2.2.1 Magnus Force and Moment

Magnus forces and moments are generated by the distorted boundary layer
about a spinning body at angle of attack, and are proportional to the spin rate and
the angle of attack. The Magnus force is typically small, up to 1/10 of the normal
force. Itis important because it gives rise to a moment which may be of sufficient
magnitude to cause the vehicle to become dynamically unstable. The Magnus force
is perpendicular to the lift plane on axisymmetric spinning bodies. It arises purely
because of viscous effects and, as postulated by Sedney [25], is caused by the
asymmetric boundary layer about the vehicle. This is shown schematically in Fig.
5. The vehicle is at some angle of attack as shown by the cross flow velocity.
When there is no spin the boundary layer is symmetric with respect to the plane of
angle of attack. When spin is imparted to the vehicle the boundary layer will distort
and become assymetric with respect to the plane of angle of attack. This gives rise
to asymmetric pressure distributions on the body, and the centrifugal pressure
gradient caused by the acceleration of the particles in the radial direction must also
be considered. The effects of a circumferential skin friction variation may not be
neglected and have to be accounted for in a Magnus theory.

The Magnus moment does not act through the center of pressure since it is a
side force. Its moment arm is different from that of the pitching moment, and for a
given vehicle configuration and center of gravity position the effects of vehicle
variation in length and center of gravity will have opposite effects on stability. For
static stability it is desirous to have the center of gravity forward, and for dynamic
stability it is desirous to have it aft, as will be shown in Chapter 7.
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Figure 5. The Magnus Effect on a Spinning Body of Revolution

The Magnus problem is a three-dimensional effect at angle of attack, and
therefore the three-dimensional boundary layer must be solved over the vehicle.
Most methods of determining the Magnus force and moment have therefore been
numerical in nature, and such work was performed by Clark [26], and Dwyer and
Sanders [27], using the finite element method. Other investigators have used
parabolized Navier-Stokes methods [28-30]. Vaugn and Reiss [31] have developed
an approximate analytical method which is especially useful for engineering design
purposes. Theirs is the only theory that can account for turbulence effects in a
straight forward manner, since turbulence modelling in computational techniques is
still a subject of investigation.

The method of Vaugn and Reiss [31] includes the boundary layer
displacement thickness distortion and radial pressure gradient effects. They do not
consider the effects of shear flow variation on either side of the vehicle, however
the overall Magnus force predicted is the same as that of the more complicated
analyses. This may be fortuitous since the physical mechanisms for the Magnus
forces are asumed to be different. In any case, the theory predicts the magnitude of
the Magnus force quite well when compared to experimental results. A similar
analysis to that performed by Vaugn and Reiss is performed here, and it is extended
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and modified for the case of a turbulent boundary layer. It includes a term that
takes into account the velocity profile over the cone in order to include the effects of
nose blunting. It should be noted that this method tends to underpredict the
Magnus effects at very high Mach numbers, however its usefulness cannot be

denied.
3.2.2.2 Skin Friction

The effects of skin friction are important for determining drag and heat
transfer to the sidewalls of the vehicle, but at high Mach numbers the other
contributing factors are of greater importance. In the current hypersonic flow
problem the dominant drag forces will be pressure drag and wave drag, and indeed
even at Mach numbers of Moo = 10 these account for almost the entire drag term,
and the skin friction contribution may be neglected [32]. The heat transfer to the
vehicle has been found based on semi-empirical techniques, and absolute
knowledge of the skin friction coefficient is not required.

The skin friction in the stagnation region, however, is of critical importance.
It can dictate the ablation and flow characteristics in that region. These effects are
discussed with ablation in Chapter 7.

3.2.2.3 Ablation Side Force

The injection of mass by ablation into the boundary layer can influence the
aerodynamic characteristics by changing the shearing stresses and the induced
pressure due to boundary layer displacement effects. Significant Magnus-like
forces can arise due to the combined effects of angle of attack, ablation, and spin
[32,33]. Due to thermal lag, the rate of ablation on one side of a spinning body at
angle of attack would be higher than on the other side. The difference in ablation
rates will create a difference in the boundary layer induced pressure and produce a
side force and moment. The side force in this case would act in a direction opposite
to that of a classical Magnus force. The magnitude of this side force has been
investigated experimentally and is typically at most 1/100 of the normal force [32].
There are no effective techniques of predicting the magnitude of this side force to
date, however if the mass flow rate is low it may be neglected.



Chapter 4

Determination of the
Aerodynamic Coefficients

The aerodynamic forces and moments are generally characterized by a
number of corresponding coefficients that are defined as the ratio of the magnitude
of the force to the dynamic pressure, normalized by the vehicle crossectional area.
In order to determine these aerodynamic coefficients the flow field about the vehicle
must be known, or more precisely the pressure coefficient over the entire vehicle
must be known. Computational fluid dynamic techniques are time consuming, and
may be limited in regards to the range of conditions over which they may apply.
There is, however, suprisingly good agreement between some semi-empirical
methods and experimental data. It is this approach that is employed here.

4.1 Pressure Force Coefficients

The methods selected for determining the various aerodynamic coefficients
required for the analysis are presented below. A complete derivation of each
method is performed in the indicated references and is not repeated here. The force
coefficients are found first, followed by the determination of the moment

coefficients.
4.1.1 Forces

In order to determine the forces acting on the vehicle the pressure
distribution over the entire vehicle must be known. The method selected for
finding the pressure force coefficients and subsequently the stability derivatives of
the vehicle is the Embedded Newtonian technique developed by Ericsson [22],
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which is valid for sharp or blunted axisymmetric bodies in the Mach number range
3 < Moo < oo,

LN
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X= n

X==Xyp x=0

&@\@

Figure 6. The Embedded Body in a Hypersonic Shock Layer

The coeficient of pressure on the "embedded" body element A shown in
Fig. 6 can be written as:




p u?

2
P U, 4.1.1.1

cm=cm+qc%(%)2

where v is the local velocity component normal to the surface and u is the axial
velocity component. For the element A pitching at q rad/sec this is defined

geometrically as:

X - XcG + rtan O
u

%zcosasin O + sin o cos O sin ¢ + q cos Og sin ¢

4.1.1.2

Cp, 1s the blast wave pressure coefficient generated downstream of the blunt nose

that would exist on an embedded cylinder, and the second term is due to the local
body shape embedded in the flowfield. Cp, is given by:

_0.081 c}){f_ 0.64

X _ Xsh 2
e 22 M
dp dn o 4.1.1.3

Ca,

Cpmax 18 the modified Newtonian impact pressure and is given by the stagnation
pressure behind a normal shock, which for Mach numbers of Newtonian interest
M 2 3 can be written:

-Y+3[1_ 1.5 1}

P Ty b 1] v+ 302 4.1.1.4

Cy is an empirical coefficient that provides an effective Mach number dependence

for the Newtonian pressure coefficient, and is given as:

C,=1.01+131[In(10Msin6]] >  Msin0204
= 1.625 Msin@<0.4  4.1.1.5
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where 0 is the angle of the body element to the incoming flow. The value for M in

the above expressions is for post shock conditions, and can be written as:

(g*)y +2

’Y-
(2 4.1.1.6

=
I
=
;

where g* = U/Us is the hypersonic velocity ratio, and f* = pUz/mem2 is the
dynamic pressure ratio downstream of the shock. These quantities are a function of
the radial position, and assuming similar profiles are themselves functions of AR

where x* is defined as:

54
x* - d, 2
ol
dy 4.1.1.7
The empirical functions f* and g* for a blunted cone cylinder are given by:
f=1f+275%" 4.1.1.8
g =1-0362VT-F, +0.6%"" 4.1.1.9

where the important parameter fo which determines the effect of finite Mach number
dependence of the profiles has been fitted to Method of Characteristics results and

can be written as:

_ 9.65 B
f,=0.17 +(M«,+8.7)

4.1.1.10

These expressions are arranged to provide close agreement with flow field
calculations based on the Method of Characteristics over a wide range of Mach
numbers. The maximum value of these functions cannot exceed unity at the edge of
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the inviscid shear layer, and are limited by this consideration to unity for 2
0.302. Rgh is found from

Rsh _ g~ C,l){f(x - ?‘ish)w2

dn dn 4.1.1.11

and R is given as:

(-l <2l emesmo sl oo s cono

4.1.1.12

where

dn dn 4.1.1.13

The parameter K* in the hypersonic limit is a true constant, and has the value of
unity. To incorporate the effects of Mach number we can write

L

e 4.1.1.14
The coefficient Cp,, is the drag coefficient for the nose, and xsh is the shock

separation distance as defined in Fig. 6. The value of Cp,, is given as:

Cp, = Cy G, sin*On 4.1.1.15

where Oy is the nose cone half angle.

Now that the pressure distribution in the form of the pressure coefficient Cp
is known, we can integrate it over the vehicle to find the net force coefficient in the
normal and the axial directions. The unsteady aerodynamic characteristics of a
vehicle pitching with a rate g have been investigated by Ericsson [22], who gives
the final form for the integrated expressions. The results for the axial and normal

forces on the body are:
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Here r(x) is the local body radius and d is the maximum body diameter. The
normal force derivative with respect to o can be written as:

ES3E

Cn, =3 f [(Coa)t + (Caoke + (A1 Colo + (AT Cu ] cos 0 sin ¢ r(x) dx do
Ky

4.1.1.18

In this expression the complicated function (CPaL)l represents the pressure change
caused by attitude change, (CPaL)Z is the change in blast wave pressure Cpo,
(AiCpa)l is the pressure change on the element caused by translation of the nose in
pitch, and (AiCpa)Z is the pressure change on the element due to the effective shape
change of the nose tip in pitch. These are given in Appendix B. The normal
coefficient derivative is required in order to determine the stability characteristics of
the vehicle.

4.1.2 Stability Coefficients and Moments

The static and dynamic pitching and yawing moment coefficients may be
written as follows. The pitch moment coefficient is:
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and its derivative with respect to & can be written:
3
L
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Here pitch and yaw are interchangeable given the axisymmetric formulation of the
problem, and we would simply use the yaw angle for determining the force and
moment coefficients in the plane of yaw.

The total dynamic damping derivative may be written:

~HA

L
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2
s

(x - Xcg +1(x) tan B ) sin ¢ r(x) dx do
4.1.2.3

The quantities subscripted by q denote the damping due to the pitching motion, and
the subscript a denotes the dynamic damping contribution which is generated by
convective time lag effects due to the changing angle of attack. These functions are
given in Appendix B.

The equations above constitute the complement of forces and moments due
to the pressure distribution about the vehicle that are needed for the solution of the

equations of motion.



4.2 Viscous Forces and Moments

The shear stresses on the fluid particles give rise to drag forces in the form
of skin friction, and Magnus forces due to the asymmetric boundary layer about the
vehicle, caused by its spinning. Further, the addition of mass into the boundary
layer caused by the ablation process may result in a significant net side force in the
plane of yaw. These forces and the moments they generate will be discussed in this

section.
4.2.1 Magnus Force and Moment

The Magnus force acting on the vehicle is due to the pressure difference on
either side of it. This gives rise to a force in the plane of yaw. Following the
analysis of Vaugn and Reiss [31] for a laminar boundary layer, the technique is
extended here to turbulent boundary layers and includes a velocity correction term
suggested by Vaugn and Reiss to take into account the effects of nose blunting.
The contribution of the skin friction variation in the circumferential direction is
implicitly assumed in the theory.

The pressure difference across the body can be written for the conical

forebody as:

[P1-Pz]z%pwrbp(Zszinasin(b)% 0<o<m

4.2.1.1
and for the cylindrical after body as:
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where h is defined as:
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and T'/Te is the compressibility correction term that is given by Eckert [35] for

turbulent flow as:

oo

T 2140037 M2+0.5 |-
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The Mach number Mg is that at the outer edge of the boundary layer. The boundary
layer thickness & used in the above expressions is simply that for turbulent

boundary layers and is:
§ =-037x [T') Ve
" {3 Rel/5|Twe) Voo
4.2.1.5
5. =037 x[T'
: Rel/5 | T

where the term V¢/Veo takes into account any blunting of the nose, and the square
root of three in the denominator for the cone boundary layer expression comes from
the Mangler transformation [31].

If we integrate the pressure difference across the body over the vehicle
surface area we can find the total Magnus force, and if the Magnus force coefficient
is defined to be:

C, = Fy
YW“LQ Vz(pd E..d.%a
2 2V, 4 42.1.6




then the Magnus force coefficient is:
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The Magnus moment coefficient can be written as:
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4.2.1.8

where the moment is taken about the vehicle center of mass. It should be noted that
the Magnus force does not act through the center of pressure and its moment arm is
given by dividing Equation 4.2.1.8 above by Equation 4.2.1.7.



Chapter 5
Heat Transfer Effects

Because of the high velocity of the vehicle, it will undergo severe
aerodynamic heating, both convective and radiative. The effect of ablation on the
vehicle is to change its aerodynamic characteristics due to the blunting of the vehicle
nose, both with regards to the drag coefficient through shape change and also with
regards to the stability due to the side force created. Because of the extremely high
Mach number of the cases being considered the radiative heating of the blunted
nosecone cannot be entirely neglected. The purpose of the heat transfer analysis
performed is in consideration of possible effects on vehicle stability, and is
therefore elementary. If much blunting of the nosetip occurs, or if the mass
addition due to ablation is high, it can change the stability characteristics of the
vehicle.

At the extremely high temperatures behind the shock, on the order of
14,000 °K, the real gas effects of air have to be included in the analysis and the
ideal gas shock jump conditions are not valid. In order to find the temperature
behind the shock, an empirical correlation formulated by Park and Bowen [36]
from enthalpy considerations is used, and has been modified to improve its
accuracy for the lower temperature range of current conditions.

The heat transfer is calculated assuming a fully turbulent flow except within
the immediate region of the stagnation point, where the flow is laminar. The heat
transfer is found for mass injection into the boundary layer of a high temperature
graphite ablator. The mass loss is assumed to occur only at the tip, and sidewall
ablation is considered negligible. This is a good approximation, as indicated by the
experimental results of Wilkins and Tauber [37] for velocities up to 7.3 km/sec. In
addition, the effects of convective and radiative heating are
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considered independent for the purpose of the analysis, even though they are
interdependent as will be discussed Chapter 7.

5.1 Convective Heating

For heat transfer rates to the stagnation point of the body for wall
temperatures below approximately 4000 °K in the flight regime where 1000 < Uco

< 10000 m/sec we can write from Tauber [38]:

Poo 172

Gr = 1.83 (104)(—-)

3 h
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Hy 5.1.1
This result is for a laminar, cold wall, with no mass addition at the stagnation point.
This implies that the influence of the wall affects the heating through the
temperature of the wall only. This is a good assumption for an ablating surface
since the wall temperature is the temperature at which mass is removed from the
surface, and is always the temperature at which the surface ablates. This
expression is independent of wall temperature, and is valid for cases where heo <<
Uco2. The value of hy is the static enthalpy at the wall, and Hg is the total enthalpy
at the stagnation region.

When the flow over the stagnation region is laminar, studies have shown
that the heat transfer rate over the blunted nose can be approximated using the
cosine law, which even though empirical has a theoretical basis for angles up to
45°. We can write:

v _ cosh

qws 5.12

where A is the body angle given by x/r. This expression is approximately accurate
for angles up to 75° [38]. The tangency point of the cone to the spherical cap is 80°
for a 10° nose-cone, and this expression is therefore assumed valid to this location.
Then the heat transfer to the body can be approximated as the stagnation point value
multiplied by the crossectional area of the blunted nose. The cosine distribution
will be modified due to the onset of turbulence almost immediately off the
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stagnation point, but the change due to turbulence is small for extreme
environments [36].

If we want to include the effects of a high temperature ablator such as
carbon-carbon we have to take into account the mass addition into the turbulent
boundary layer and the effects of the chemical reactions between the injected species
and the air. The effects of turbulence are accounted for semi-empirically in the
method of Putz and Bartlett [39]. We can take these factors into account by
defining a function @ such that:

= _Gw

" GuB =0 5.1.3

where B is defined to be the mass addition parameter

B=- My (He’hw)
qwB =0 5.1.4

and my is the mass addition rate. Here He is the total enthalpy at the edge of the
boundary layer, and is approximated by Hg. Putz and Bartlett derived the empirical

relation for the ablating surface as:

@'=1-aB+bBZ+cB3-dB* 5.1.5

where a = 0.6563, b = 0.01794, ¢ = 0.06365, and d = 0.01125. Here ¢' is
defined as:

A c)
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The ratio AH¢/He accounts for the gas phase chemical reactions and diffusion
effects for injected species, and its value is found from Putz and Bartlett [39] for
graphite based ablators with a given mass addition parameter.
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5.2 Radiative Heating

At the extremely high velocities in question here, where the temperature of
the air behind the shock is large, we have to include the effects of radiative heat
transfer. This cannot be neglected, as the radiative heating rate goes as the fourth
power of temperature and may be significant. According to Park and Bowen [36]
the dominant form of heat transfer may be radiation, since as the layer of ablation
gases is formed it will block the effects of convection and diffusion. Fig. 7 shows
the stagnation region for the analysis of radiative heating. The radiation reaching
the wall is diminished by the layer of gases due to its opacity. Park and Bowen
have assumed an optically thick Rosseland approximation which is valid at the high
pressures of the lower altitudes. As the altitude is increased, it overestimates the

heat transfer rate as the Rosseland approximation becomes less valid.

Shock
Layer

J \‘ Shock

i Blowi ng
Stagnation Region Layer

Figure 7. The Ablating Surface of a Hypersonic Blunt Body

The approach employed here is the method of Probstein [40], who uses the
radiation conduction equation valid for optically thick media and a radiation 'slip

condition'. He derives an equation of the form:
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Here 71 is defined as T = A/ ly, where A is a characteristic length which in the
current problem is the shock detachment distance, and ly is the photon mean free
path, or the inverse of the absorption coefficient. For large and small T Equation
5.2.1 takes on the correct limiting values. The value for the mean opacity is found

from an empirical correlation given by Park and Bowen as:

o =04 (P—
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Here p, p, and T are after shock conditions, and the reference values are at sea
level. This expression with o = 0.16 cm™1 yields approximate values for the
Rosseland mean free path 1/a ,which correspond to experimentally found values
for a carbon gas layer at high pressures. The post shock temperature can be found
from enthalpy considerations and the empirical relationships:

H :H’(gorl(‘)g)l.f

H,=3.6x 107( 1 ’%log(‘i%ﬁ))
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Here p is the stagnation pressure in atmospheres, and H is in J/kg. The equation is
slightly modified from that of Park and Bowen to better fit the lower temperature
range of this study. This expression, when used for finding the post shock
temperature at initial launch, yielded an error in T4 of only 13% for black body
radiation when compared to the temperature found from Mollier chart diagrams
[41], thus the radiative heat transfer to the surface can be approximated using the
preceding equations for all altitudes since it would be the conservative estimate.



Chapter 6

Stability Requirements

Since the exact equations of motion are being solved in their complete form
a detailed stability analysis is not performed. Rather if the solution to the equations
of motion does not diverge, then the motion is considered stable. It is sometimes
necessary, hoever, to have an approximate set of constraints that bound the
solution. For the case where the pitch moment derivative is positive it is required
that certain stability constraints be met [42]. It is these formulations that are

presented here.

6.1 Gyroscopic Stability

The most important stability condition is that given by the gyroscopic
stability factor. If this condition is not met then the gyroscopic forces are unable to
balance the aerodynamic forces and the vehicle will be unstable. It is essentially a

function of the spin rate, and may be written as:

_ 2 Ep?
¥ ndp ULCh, I 6.1.1

It is the ratio of squared gyroscopic spin to the static moment coefficient. When
this factor is greater than unity periodic motion occurs and the vehicle will be
gyroscopically stable. From this we can determine the minimum rate of spin that
the vehicle must have in order to be statically stable.
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6.2 Dynamic Stability

The dynamic stability factor is essentially the ratio of the Magnus moment

coefficient to the damping moment coefficient, and it can be written:

' _ m d?
z(cNa Cp -+ CNW)
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6.2.1

The limits of the dynamic stability factor are 0 < Sq < 2, and any vehicle lying
outside this range will not be dynamically stable. The dynamic stability factor is

primarily a function of vehicle configuration.
6.3  Further Conditions on Stability

In addition to satisfying the stability factors individually, a dynamically
stable vehicle must satisfy the condition:

P -
Sa(2-84) (23)

S
The implications of these conditions are that any vehicle can be made
gyroscopically stable with sufficient spin, but that this does not necessarily imply
that the vehicle will be stable. A dynamically stable vehicle must also be statically
stable, and if the dynamic stability factor lies inside the allowed range 0 < Sq £ 2,
then a statically unstable vehicle can be made stable with a sufficiently high rate of
spin. When the dynamic stability factor is outside this range, then a statically
unstable vehicle cannot be spin-stabilized and a statically stable vehicle may be
made dynamically unstable by too high a rate of spin. Thus, certain vehicle
configurations cannot be made stable by spinning.



Chapter 7

Results and Discussion

The analyses of Chapters 4 and 5 are carried out for the initial configuration
of the ram accelerator vehicle, and then the equations of motion of Chapter 2 are
solved numerically in order to determine the flight path characteristics. At each time
step new aerodynamic coefficients are found for the vehicle configuration. This is
required since as the vehicle transits the atmosphere, its attitude, and therefore its

aerodynamic coefficients, change with time.

7.1 Results
7.1.1 Results of the Aerodynamic Force Calculations

The methods of Chapter 4 and 5 were applied to the ram accelerator mass

launch vehicle and the results of the analysis are presented in Figures 8-15 for
sideslip angles of B = 0°. The initial configuration of the ram accelerator vehicle is:

dp/d=0.13

L/d=10.0

xcg/L=0.70

Meo=30.0

Figure 8 shows the pressure distribution Cpg about the nose cone and the

shoulder region at an angle of attack of o = 2° for the windward and the leeward
side of the vehicle as a function of position. Although not shown for clarity, the
pressure coefficient at the stagnation point reaches its maximum value of 2.6 and
decreases rapidly as it expands over the spherical nose tip. There is an over-
expansion region as the flow accelerates about the tip, and then the pressure
recovers as the flow is compressed by the conical forebody. There is a rapid
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Figure 8. Pressure Coefficient vs. Axial Position on Vehicle

expansion at the vehicle shoulder, followed by a slowly decreasing pressure
gradient over the cylindrical afterbody. The effect of such a pressure gradient is to
induce a lift force on the body, and as can be seen, it is concentrated in the
forebody region, which gives rise to large moments about the vehicle center of
mass.

Figure 9 shows the variation of the axial force coefficient Ca and the normal
force coefficient Cn with angle of attack due to the increasing pressure force on the
windward side of the vehicle. This is indicative of very high Mach number flows,
where Ca is essentially invariant, and Cy increases steadily with increasing angle
of attack. The effects of the normal force are to create a pitching moment about the
vehicle center of mass, as shown in Fig. 10. The pitching moment increases
rapidly with angle of attack, although this increase is essentially linear, as shown in
Fig. 11, where the pitch moment derivative Cpp, is shown with respect to the pitch
angle. The effect of a positive pitching moment is to destabilize the vehicle, and

any increase in angle of attack will only cause it to increase further. The total pitch
damping derivative Cmg is shown in Fig. 12, and it can be seen that it is quite

large, Cmg = - 45, due to the length of the afterbody.
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Figure 10. Pitch Moment Coefficient for the Ram Accelerator Vehicle
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Figure 13. Magnus Force and Moment Coefficient for the Ram Accelerator

The Magnus force CYp and moment coefficients CNp are shown in Fig. 13,

and are quite large. This is characteristic of highly spun hypersonic vehicles. The
Magnus force is in the negative direction in the plane of yaw and creates a positive
moment. Figures 14 and 15 show the relative magnitudes of the forces and
moments acting on the vehicle. The largest force is naturally the drag force, but as
the angle of attack increases the vehicle normal force approaches it in magnitude.
The Magnus force is approximately 1/5 the normal force over most of the range of
angles of attack . The relative magnitude of the moments created by these forces is
shown in Fig. 15, and it can be seen that the pitch moment is indeed the largest and
that it therefore merits the most consideration in stability analyses.
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7.1.2 Solutions for the Equations of Motion

The test of vehicle stability is the solution of the equations of motion. Itis
found that the given initial configuration of the ram accelerator vehicle is
dynamically unstable, and the equations of motion diverge rapidly and cannot be
solved. The effects are so large that the vehicle begins to tumble within a few
iterations of the initial conditions, and the solution of the equations of motion in
such a case is of no practical value. When the stability conditions of Chapter 6 are
applied, it is evident that the vehicle is highly unstable, and indeed cannot be spin
stabilized in its current configuration.

If the results for the aerodynamic force coefficients are substituted into the
stability criteria for gyroscopic and dynamic stability we see that the stability factors
are well outside their limits. At an angle of attack of 1° the gyroscopic stability
factor for the ram accelerator vehicle is approximately Sg = 0.05. Given a high
enough spin rate the vehicle can be made gyroscopically stable, and at an angle of
attack of 1° the spin rate required is approximately 17,000 rad/sec. This, however,
does not guarantee stability as the conditions for the dynamic stability factor must
also be satisfied. The dynamic stability factor for the ram accelerator vehicle at 1°
angle of attack is Sq = 37.4, well outside the limits 0 < Sq < 2. This implies that
the current configuration of the ram accelerator vehicle cannot be spin stabilized
under any conditions.

From the form of the dynamic stability factor it can be seen that the
destabilizing term is the Magnus moment derivative. From the results presented
previously in Figures 9 and 11 the normal coefficient derivative and the drag
coefficient are essentially constant over the small range of angles of attack being
considered. If their values at 1° angle of attack are assumed, then in order for the
dynamic stability factor to satisfy its constraints the Magnus moment derivative is
required to be CNp,, < 0.87. This represents a reduction of the allowable Magnus
moment by a factor of 20 over what has been calculated.

The considerations for a more stable vehicle design are discussed in Section
7.3, where based upon a new vehicle configuration, the stability factors may be met
and then the equations of motion may be solved. The effects of various changes of
vehicle configuration and how they affect the aerodynamic coefficients, and hence
the stability factors, will be discussed in Section 7.2.
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7.1.3 Heat Transfer Calculations

In view of the above stability considerations, the heat transfer analysis for
the ram accelerator vehicle was performed by forcing the vehicle to be stable-i.e. the
angle of attack was set to zero. This gives no destabilizing forces or moments and
atmospheric transit can be assured. For an initial launch velocity of 10,000 m/sec at
sea level, and a flight path angle of 20°, the vehicle retained 65% of its initial
velocity, and almost the entire velocity loss occured below 18,000 m.

The results of the analysis are presented in Figures 16-19 for the stagnation
region. It can be seen that the radiative heat transfer cannot be entirely neglected.
Fig. 16 shows the relative magnitudes of the convective heating to the body with
and without ablation. At the higher altitude the two lines converge since the mass
injection into the boundary layer becomes small, and the effects of the reduction of
convective heat transfer caused by the ablation process are no longer important.
The peak heating rate is 14.5 kW / cm? and occurs at 4000 m. Although this is
high, it decreases rapidly with altitude and at 24,000 m it is only 4.8 kW / cm?, less
than 1/3 of its peak value.

30000 T
J Maximum Heat Flux, No Ablation: | == =~~=~ No Ablation
£ \‘ 76,750 Wicm/cm ————  Ablation
L 1
§ 200004 %
2
>
=2
b 10000 -
E
< M=30.0
m=0.05
0 1 ¥ T 4 Y Y

i 1 i i 1
0 10000 20000 30000 40000 50000 60000
Altitude (meters)

Figure 16. Effects of Ablation on Convective Heat Transfer
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Figure 17. Effects of Ablation on Radiative Heat Transfer

The radiative heating effects are shown in Fig. 17, where the radiative heat
transfer to the vehicle is shown with the black body limit as a comparison. At the
lower altitudes the radiative heat transfer to the vehicle is greatly reduced due to the
optical thickness of the ablative layer. As density and mass loss decrease with
increasing altitude, the opacity of the blowing layer decreases and more of the
radiation reaches the surface of the vehicle. The peak heating rate is 4 kW / cm?
and occurs at 14,000 m. The peak radiation rate occurs at this rather high altitude
primarily because the model tends to overpredict the radiation effects at the higher
altitudes.

Figure 18 shows the relative magnitude of the convective and radiative
contributions to the overall heating rate. It can be seen that for the entire altitude
range the convective effects dominate. It should be pointed out that the radiative
heat transfer to the vehicle is overestimated at the upper altitudes using this model,

but due to the low overall mass loss its conservative results are sufficient for the
present analysis
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Fig. 19 shows the total mass loss of the vehicle with altitude, and it is
shown that it amounts to only 2.0 kg. The contribution of convection is 1.6 kg,
and that of radiation is 0.4 kg. Most of the mass loss occurs at altitudes below
20,000 m and represents only 0.1% of the overall vehicle mass.
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Figure 19. Mass Loss During Atmospheric Transit of Ram Accelerator
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The extremely low mass loss implies that the mass injection into the
boundary layer is not significant in terms of the stability considerations discussed
previously in Chapter 3, and the nose bluntness increases to less than rp/rp = 0.15
from the initial configuration of rp/rp = 0.13. Since the mass loss is small and the
nose radius does not change greatly, the effects of ablation do not significantly
affect the stability of the vehicle. The coupled effects of radiation and convection

are discussed in Section 7.2.6.

7.2 Discussion

The important variable parameters of the problem are the Mach number, the
bluntness ratio of the nose, dp/d, the length of the vehicle, L/d, and the position of
the center of gravity, xcg/L. The effect of varying any one of these values can
significantly alter the magnitude of the coefficients, and hence the stability of the
equations of motion. How a change in each of these quantities affects the
aerodynamic characteristics is presented below, with a discussion of its effects on
stability. As each indicated vehicle variation is performed, the other vehicle

parameters are kept constant.

7.2.1 Mach Number Variation

The effects of Mach number variation on the aerodynamic characteristics for
the ram accelerator vehicle configuration are shown in Figures 20-24 for angles of
attack of 1° and 2°. Figure 20 shows the axial drag coefficient Ca which decreases
with increasing Mach number to Ca = 0.17 , and then remains essentially constant.
This is characteristic of hypersonic drag profiles.
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Figure 20. Axial and Normal Force Coefficients for Varying Mach Number

The normal coefficient Cy is essentially constant over the Mach number
range of interest, but it increases slightly with increasing Mach number due to the
higher pressure forces on the winward side of the vehicle. Fig. 21 shows the pitch
moment coefficient Cyy which increases with Mach number and then levels off to a
constant value. It is also shown in these figures that at high Mach numbers the
normal force coefficient and pitch moment are strong functions of angle of attack.
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The Magnus force and moment coefficients Cyp and CNp are shown in Fig.

22, and increase with increasing Mach number.
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Figures 23 and 24 show the normal and pitch derivatives Cng and Cpg,
and the pitch damping derivative Cmpg. The normal derivative does not vary much

over the Mach number range, but the pitch and pitch damping derivatives are strong
functions of Mach number. The pitch derivative increases steadily until Meo = 20,

and then remains essentially constant.
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7.2.2 Nose Bluntness Variation

The effects of nose bluntness are quite pronounced, as is shown in Figures
25-29. The most dramatic effects are at the higher angles of attack. Fig. 25 shows
the axial and normal force coefficients Co and CN, and the effects of nose blunting
are to dramatically increase the axial drag and to substantially decrease the
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Figure 25. Axial and Normal Force Coefficients for Varying rp/th

normal lifting force. The axial drag coefficient for rp/d = 0.4 is approximately 1.5
times that for rp/rp = 0.1. The normal force coefficient is also a strong function of
nose bluntness, especially at the higher angles of attack, where the ry/rp = 0.4 case
provides only 1/3 the normal force of the rp/rp = 0.1 case. This is further reflected
in Fig. 26, which shows the pitch coefficient Cp,. Since the normal force is
reduced for blunted bodies the moment created about the vehicle center of mass also
decreases with increasing nose bluntness, and therefore nose blunting contributes to

increased static stability.
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Fig. 27 shows the normal and pitch derivatives that verify this conclusion.
The damping derivative is shown in Fig. 28, where it can be seen that nose blunting

is dynamically destabilizing.
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Fig. 29 shows the Magnus force and moment coefficients. The Magnus
force is not too sensitive to the effects of nose blunting, however the moment
created is larger for the blunted bodies due to the thicker boundary layer over the

forebody.

1.0 m/rb=0.4
) o 'N/rb=0.3
084 Z3n/b=0.2
= “f‘ rm/rb=0.1
] v
1 *
0.4 4 ;’
1 ~
. P 4
02 - (’

Magnus Force and Moment Coefficient

Figure 29.

Force
----- Moment

M=30.0
pd/2V=0.13
L/d=10.0
xcg/L=0.7

Magnus Force and Moment Coefficients for Varying ry / 1



52
7.2.3 Overall Vehicle Length Variation

The overall vehicle length is also an important parameter in determining
vehicle force coefficients, and its effects are even more pronounced for the stability
derivative coefficients. Fig. 30 shows the small variation of the axial and normal
force coefficients Ca and Cn, and Fig. 31 shows the variation of the pitch
coefficient Cpy. It should be noted that although the vehicle L/d was changed, the
center of gravity xcg/d = 0.7 condition was maintained. As might be expected the
pitch coefficient for a long vehicle is substantially higher than for a short vehicle,
and as shown in Fig. 32, the pitch derivative Cpp, for an L/d = 9.0 vehicle is
almost twice that for an L/d = 6.0 vehicle. Hence a longer vehicle is much more
statically unstable and requires a higher rate of spin for stability. The damping
derivative Cmyg is shown in Fig. 33, and it is shown that a short vehicle is much

less damped than a longer vehicle.
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The significant effects of vehicle length on the Magnus force and moment
coefficients are shown in Fig. 34. An L/d = 9.0 vehicle has more than three times
the Magnus force and more than ten times the Magnus moment of an L/d = 6.0
vehicle. This is because the magnitude of the Magnus force is directly proportional
to the thickness of the boundary layer , and the boundary layer over a short vehicle
is thinnner than for a long vehicle. In addition, the force acts over a reduced vehicle
surface area which gives a smaller moment as well. The contribution of the
afterbody to the Magnus terms is much greater than that of the conical forebody,
and hence a short vehicle will contribute less to the Magnus term. For vehicles with
the same length forebody and afterbody the contributions of the conical section are
only 30%. Since the Magnus moment is such an important effect in terms of
vehicle stability, a short vehicle will be much more dynamically stable than a long
vehicle. Hence shortening the vehicle greatly affects the static and dynamic

stability.
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Figure 34. Magnus Force and Moment Coefficients for Varying L/d
7.2.4 Position of Center of Gravity

The effect of changing the position of the center of gravity is shown in
Figures 35-38. The value of the aerodynamic forces are not changed, since they are
functions only of the exterior configuration, but the moments are changed
dramatically. The position of the center of gravity is therefore one of the most
critical parameters for determining vehicle stability. The overall vehicle length is
maintained at L/d=10.0. Figure 35 shows the significant variation in the pitch
coefficient Cy that accompanies x¢cg/d changes. As the center of mass is moved
forward, the pitch coefficient, Cm, and the pitch derivative, Cm,, shown in Fig.
36, are reduced dramatically. This is as is expected, since moving the center of
mass nearer to the center of pressure tends to reduce the moment. It is interesting to
note that even at xcg/L = 0.2 the pitch derivative is positive, and hence the vehicle is
statically unstable. This implies that the vehicle center of pressure is even further
forward than this point. When the pitch moment coefficient C, is divided by the
normal force coefficient Cy we find that the center of pressure for this configuration
at 1° angle of attack is approximately at xcg/L = 0.18. This seems suspect at first,
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but if we re-examine Fig. 8 we see that the pressure coefficient is largest for xcg/L

<0.25. Further, there is a large pressure coefficient in the immediate vicinity of the
stagnation region. This acts to move the center of pressure even further forward.
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The damping derivative Cng is shown in Fig. 37, and it can be seen that it

is the highest for cases where the center of gravity is further back. Figure 38
shows the Magnus force and moment coefficients Cyp and CNp- These decrease

with increasing xcg/L. Hence the movement of the center of gravity back is seen to

be a dynamically stabilizing effect in terms of the Magnus effects. There are thus
two competing effects. Moving the center of gravity forward increases the static
stability, and moving the center of gravity back increases the dynamic stability due
to Magnus effects. In fact, vehicles that are statically unstable have been made
dynamically stable by moving the center of gravity back to counter the strong

Magnus effects [2].
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Figure 38. Magnus Moment Coefficient for Varying xcg/L

7.2.5 Miscellaneous Effects

This section will discuss the various miscellaneous effects that have to be
accounted for in a complete theory, that have not been included here. They include
flow structure such as separation, nonlinearity of the aerodynamic coefficients in
pitch and yaw, Reynolds number effects, and atmospheric density gradients for an
ascending vehicle.

One of the implicit assumptions in the preceding analysis has been that the
flow remains attached to the body. This condition can be satisfied at the lower
angles of attack, however at the higher angles flow separation effects cannot be
neglected. The effects on stability derivatives are such that separation is statically
and dynamically destabilizing. In addition, it may be that flow separation will act to
reduce the Magnus force, since the boundary layer separation will act to reduce the
pressure gradients. The effects of separation are not, however, predicted by the
theory of Vaugn and Reiss [31].



59

The effects of pitch and yaw are assumed to be linear, i.e. the contributions
of pitch and yaw to vehicle stability are assumed to act independently. Since most
of the non-linear mechanics investigations have centered on two degree of freedom
systems [43] they are not applicable to the sixth order system being considered
here. For atmospheric transit of a gyroscopically stable vehicle the effect of a
mildly nonlinear moment is to change the frequency of the motion. For cases with
large nonlinear effects the small perturbation analysis of Ref. 43 is invalid, and no
prediction can be made on vehicle dynamics. Strong nonlinearities also affect the
damping characteristics of axisymmetric vehicles, and are essentially independent of
the initial conditions.

The effects of Reynolds number change on the vehicle at this high Mach
number are not significant. The Reynolds number is on the order of 10° and the
flow is highly turbulent. The transition point is in the immediate vicinity of the
blunted tip, and the flow is certainly turbulent at any point past the sonic line. The
flow for any change in Reynolds number would still be in the turbulent flow
regime, and the effects of viscous interactions caused by transitions do not need to
be considered. The aerodynamic force coefficients most likely to be affected by
Reynolds number changes are the Magnus terms, where the magnitude of the forces
is directly proportional to the boundary layer thickness. There is also a slight
increase in dynamic stability associated with decreasing Reynolds number. As Re
decreases, the pitch damping coefficient will increase, providing for a more stable
vehicle.

When the vehicle is ascending in a negative density gradient the damping
characteristics of the configuration are changed. For an ascending gyroscopically
unstable vehicle the effect is to damp the motion , hence the effects of a
negative density gradient is stabilizing to an unstable vehicle. The converse is true
for a statically stable vehicle, and the effects of decreasing density are to destabilize
the vehicle by reducing the damping.

It should be noted that the vehicle design considered here did not include a
boatail since the Embedded Newtonian theory cannot account for negative body
angles. The effects of a boatail in hypersonic flow have been considered by Daniel
and Milton [42]. In terms of stability considerations, for a fixed length vehicle the
effects of boatailing are destabilizing. The effects of a boatail are to move the center
of pressure forward, creating a larger pitch moment. In addition, a vehicle with a
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boatail will have a different mass center and moment of inertia which will tend to
destabilize the vehicle. The importance of these effects is discussed in Section 7.3.

7.2.6 Heat Transfer

The heat transfer analysis of Chapter 5 was presented in light of its
contribution to vehicle stability in terms of nose bluntness effects. In the analysis
of Chapter 5 it was assumed that the effects of radiation and convection could be
treated separately, however this is not the case.

In a situation where the ablation rate is high, the layer of ablative gases
formed at the surface of the vehicle will act to block the effects of convection. This
is because the blowing layer thickness is much greater than the viscous layer
thickness and the flow cannot reach the surface, as shown in Fig. 7. The only
transport mechanism for heating will therefore be radiation.

If, however, we consider the Goulard number, a ratio of the radiant energy

to the energy of the flow:

1‘*=20T4
pU

[os

7.2.6.1

B9 =t

we find that at sea level, where the radiant energy is expected to be the highest, it
has a value of I' = 7.5 x 10-3. This implies that the convective heating effects
would be much more dominant than the radiative effects at the stagnation region, as
1s borne out in the previous results.

Because the mass flow rate of the ablative products is low, we cannot rule
out convection as a heat transfer mechanism, since the blowing layer may not be
effective in blocking the convective contribution. At the same time, the effects of
radiation are not negligible and must also be included. Hence, the complete model
must include both radiative and convective heat transfer effects.



61
7.3 A Stable Configuration

Based on the preceding stability considerations an attempt was made to
select a vehicle that would be statically and dynamically stable. Such a
configuration could not be found at the present time. The most stable configuration
found consists of an overall body length of L/d = 6.5, a center of mass position
xcg/L = 0.6, and a bluntness ratio rp/rp = 0.2. This configuration yields a dynamic
stability factor Sq = 18.4 and requires a spin rate of 6300 rad/sec for static stability.
The drag penalty of the blunter nose radius was not great, and was acceptable based
on its effects of improving the static stability.

Altering the configuration of the vehicle allowed the aerodynamic
coefficients to be selectively changed, however the defeating element in meeting the
stability factor constraints is the change of the mass distribution of the vehicle. The
vehicle mass was kept constant during the configuration changes, and a
homogeneous mass distribution was assumed. This produced moments of inertia
for the vehicle that could not satisfy the dynamic stability factor of Equation 6.2.1
with any combination of aerodynamic coefficients. All configurations could satisfy
the gyroscopic stability factor with sufficient spin.

Based on the parametric study of vehicle configurations it was found that a
vehicle's dynamic stability could be improved by reducing the overall length of the
vehicle and by selective positioning of the center of mass. The effects of changing
the center of mass, however, are not straight forward. Selecting a center of mass to
minimize the pitching moment and to maximize the pitch damping does not
necessarily result in a stable configuration, as the important effects of changing the

moments of inertia must be considered also. Based on the form of the dynamic
stability factor, we would like a larger moment of inertia Ix and a smaller moment

of inertia Iy than can be given by the current mass distribution. Since this analysis
considered only the case of a homogeneous mass distribution the results must be
qualified to indicate that a stable configuration cannot be found for this situation
only. In an actual Ram Accelerator Mass Launcher vehicle the mass distribution
might be such that a configuration may be found that could be stable, however this

cannot be determined at present.



Chapter 8

Conclusions and
Recommendations

It has been shown through the numerical integration of the equations of
motion that the current Ram Accelerator Mass Launcher vehicle is dynamically
unstable, and that it cannot be spin stabilized with any vehicle rotation. The mass
loss due to ablation for a launch velocity of 10,000 m/sec at sea level, and a
flightpath angle of 20°, was found to be only 2.0 kg. It was shown that the effects
of radiative and convective heating must both be considered. The effects of ablation
on vehicle stability are found to not be important, and the small increase in nose
blunting that occurs is stabilizing.

Based on the preceding analysis it is recommended that any Ram
Accelerator Mass Launcher vehicle be actively stabilized. This would have the
added advantage of simplifying the aerodynamic force system since vehicle spin
would no longer be required, and the Magnus terms would not contribute to
instability. Many types of active control systems exist which could perform this
function, ranging from simple fins to reaction jets.

Although a contribution to determining the stability of the Ram Accelerator
Mass Launcher was made, it is necessary for future efforts to include an
investigation of vehicles with nonhomogeneous mass distributions in order to
investigate a more realistic situation. Considerations for these investigations must
also include a more detailed investigation of flow separation effects and boatailing.
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APPENDIX A:
EQUATIONS OF MOTION

The simultaneous eqautions of motion that need to be solved for
determining vehicle motion are presented here. Prior knowledge of the forces and

moments is assumed, and the initial conditions are:

(A 1 R)
(u,v,w)

(6,0, ¥ )
(p,q, 1) Al

These specify the position, attitude, and velocity of the vehicle in body axes. R
represents the geocentric altitude. The equations are as follows:
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Here the forces D, C, and L are the drag, side, and lift forces in the vehicle axes

system. The force equations can be writen:
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The transformation matrix Lpy between coordinate systems can be given by:

Lpy =

cos 0 cos y

cos 0 sin y

sin ¢ sin 6 cos W sin ¢ sin O sin

-cos ¢ sin y

+ cos ¢ cos

cos ¢ sin 6 cos y cos ¢ sin 6 sin y

+sin ¢ sin y
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-sin B

sin ¢ cos 6

cos ¢ cos 6
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A.14

where the inverse matrix Lyg = Lgy! = LgyT since they are orthogonal matrices.



APPENDIX B:

aC
(Cpak = Cy 2=

3 acpo dCpn
(de)z - BCDN oo

UNSTEADY AERODYNAMIC DERIVATIVES

The functions that are used to find the nonsteady contributions of variations
in angle of attack for the embedded pressure coefficients can be given by [22]:
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where for a spherical nosetip
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and the dynamic derivative of (v /u) is just:
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