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CHAPTER I

INTRODUCTION

Work on a high velocity device called the ram accelerator is in progress at
the University of Washington. This device is capable, in principle, of accelerat-
ing payload masses up to metric tons to velocitjes of 8 to 14 km/sec and smaller
Mmasses to velocities up to about 25 km/sec by chemical means. In the lower speed
range of operation (1to 14 km/sec) the payload/projectile is propelled through a
tube containing combustible gas mixtures. The projectile, analogous to a ramjet

centerbody, experiences a thrust as combustion and/or detonation occurs in the

gas. A conical shock wave develops on the projectile nosecone. Flow parameters
such as pressure and composition can be set so that the reflected shock wave ini-
tiates combustion. The projectile travels at a velocity greater than the detonation
speed of the fuel mixture. A detonation wave forms at the reflected shock front
where combustion occurs in a thin layer. The heated gas expands through the
nozzle formed by the projectile rear and tube wall, providing thrust. In this mode
of operation, the ram accelerator can accelerate projectiles to velocities up to 14
km/sec. A research version of the ram accelerator, operating in the lowest velocity
range (1 to 2.7 km/sec) ramjet mode, has been constructed at the University of

Washington and is presently in operation.

release by the combustion and/or detonation of gas, or, in the higher velocity modes,

the detonation of high explosives, involving dense media interaction. The need to
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demonstrate the viability of advanced ram accelerator concepts has motivated the
development of a computational fluid dynamica] (CFD) computer program. This

Program, hereafter referred to as the “code” is the subject of this thesis. The code

11/750 computer.

The code numerically solves the two-dimensional Euler equations using an ex-
plicit predictor-corrector time differencing scheme 2 This code differs from most
Euler solving codes in that it can successfully mode] ultrahigh velocity flows and
it can use a completely general equation of state. Also, simple chemical reactions
can be included. A new correction flux splitting (CFS) technique, capable of high
velocity flow calculation, is available in the code. The two-dimensional version of

the code can be run in either planar or axisymmetric geometries. A one-dimensiona]

conical shock
wave oblique detonation
tube wali | wEve
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Fig.1 Oblique detonation ram accelerator




CHAPTER 11

CODE DEVELOPMENT

A. Design Features

dictate. The major code features include:

1. Multiple Component Media

The working fluid may be composed of multiple arbitrary chemica] species

to model mixtures such as fye /oxidizer/ diluent.

2. Combustion

corrector (second order accurate ip time).
3. Multiple Zones

In the two-dimensional versjon of the code, both axisymmetric and planar

problems can be analyzed. The domain may be divided into multiple zones with the
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of a correction flux splitting or Godunov technique in calculation of cell boundary

fluxes (Sec B.2) lifts the restriction that the EOS be of ideal gas form.

B. Numerics

1. Governing Equations

The two-dimensional Euler equations, written in conservation form are:

8U+3F+8G‘_.0 ,
ot dr  dy (1

where U is the state vector

( p
ou

pv

v=] el 2]
J

pma
and the flux vectors F and G in the z and y-directions are given by

( pu ( pv
pu® + p poy
puv pvi+p
F=|ulee+p) G =] vlee+p) ) (3]
pumy pUmMYy
pumsz pum,
) D)

The code employs the finite volume calculation technique. The state vari-
able U is calculated at the center of each computational cell characterized by den-
sity, p, total energy per unit volume, e;, axial velocity, u, and radial velocity, v.
(et = p (e + 352-2? + 2;) where e is the internal energy.) Local speed of sound, ¢, tem-
perature, and pressure, p, are obtained from the equation of state, and component

mass fractions, m;, are also calculated.

The flux vectors, evaluated at cell boundaries, are determined by the values

of the primitive variables (p,u,v,e,p,m;) on either side of the cell wall. A third
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order extrapolation/interpolation of p, u, v, €, and m; is used to obtain cell wall
values. p is then obtained from the EOS. If, however, the extrapolated /interpolated
cell wall boundary values for each variable are not between the two adjacent first
order values, the corresponding first order value is chosen. This technique, which
forces the code to revert to first order calculations in regions of strong curvature,
avoids the instabilities which would occur if third (or second) order calculations
were used throughout the flow field. Cell wall value calculations are illustrated in
Figure 2. The final calculated cell wall quantities are weighted averages of third
order interpolated and extrapolated values. The weighting factor can be “tuned” to
enhance solutions by reducing numerical dissipation, provided that solution stability
(Sec B.4) is retained.

2. Cell Wall Flux Calculations

The flux vectors, F and G, are calculated from the state vector U obtained
at either side of the cell wall. Three methods are available. The code is written to
employ these techniques, as options, discussed below. Test case comparisons were

conducted to determine the optimum method.

Two correction flux splitting techniques and a first order Godunov method are
available in the code. All observe the proper characteristic directions of information
flow. In the following discussion, for clarity, these techniques are illustrated referring

to the one-dimensional one component case.

The Euler equations, if homogeneous of degree one, have the property? that

oF
U [4]

The Jacobian matrix, A, may be diagonalized by the similarity transformation
A=TAT™! (5]

where A is a diagonal matrix containing the eigenvalues of 4 which are u, u+ e,
and u —¢. Hence, the flux vector F can be “split” into two matrices, one containing

information traveling from the left, denoted by the superscript +, and the other
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(b) reversion to first order calculation is required in this case.

Fig. 2: Cell wall value calculations
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containing information traveling from the right, denoted by the superscript —,
F* = A%y, F~ =471, (6]

where subscripts / and r imply evaluation at the left and right sides of the cell wall,
respectively. The matrix 4 may be evaluated alternately at the left side, A;, or

right side, A,, for predictor-corrector methods, or at averaged conditions.

The standard flux split technique sets the cel] boundary flux, Fy, to be the sum
of the left and right fluxes.

Fo=F'+F~ = A*U, + 4, [7]

Although this method preserves the proper characteristic flow of information, it is
not suitable for this code. The condition that the Euler equations be homogeneous
of degree one requires an equation of state of the form p = K pe, precluding general

EOS flow analysis.

However, it has been found that a correction, usually small, applied to the
standard technique yields accurate results. This correction flux splitting (CFS)

technique is
Fy = Fi + 47 (U, - U)) 8

or
F=F + 4} (U, - U,) (9]

where F; and F, are calculated directly from the left and right hand side primitive

variables.

The code uses two versions of this correction flux splitting technique with the
matrices 4, A*, and A~ calculated for a general equation of state. The first method
(CFS1) calculates P, p, u, and e as for a one-dimensional problem. Velocity v at the
cell boundary is set equal to v; or v, according to the direction of the 4 characteristic.

Mass fractions for a multi-component region are treated in the same manner as the
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v velocity. The second method (CFS2) includes v in the matrix calculations and

mass fractions are treated as in the first method.

The third method available for Hux calculation is the first order Godunov
technique® (GOD1). It is not a flux splitting technique and does not require the
Euler equations to be homogeneous of degree one. Basically, this method consists
of solving the Riemann Problem at each cell boundary to first order accuracy. The

equations? associated with each of the three characteristic directions are

dp = pcdu (u + ¢ characteristic)
dp = —pedu (v — ¢ characteristic) [10]
d
de = p=2 (u characteristic).

2
These equations taken with the equation of state p = p(p, €) can be solved for
the four cell wall quantities P, p, u, and e directly. For example, in the case of an

ideal gas, with a rightward moving shock wave and a leftward moving expansion

zone, these equations become

P=pi=—pici(u — u)

P=Pr=prer(u —u,)

e =p (ﬂ-—pz) [11]

pi
p= (v - 1)pe.

Second order or even exact Riemann solutions can be obtained, but are not
used in the present code. Velocity v and component mass fractions are calculated
as in the first CFS techique.

3. Calculation in Time

The unsteady Euler equations are hyperbolic in nature for all flow regimes.
The code solves them numerically using an explicit finite difference scheme march-

ing in time. This approach is chosen as the calculations are more straightforward
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than those associated with implicit schemes which require the “inversion” of a pen-
tadiagonal matrix in the two-dimensional case, Also, since this code is intended to

study a considerable number of unsteady flow development problems, the conver-

relatively unimportant.

The code employs the MacCormack predictor-corrector differencing scheme?
which is second order accurate in time. The numerical solutjon to equation [1] is

advanced in time from nAt to (n + 1)At in each cell as follows:

Predictor step:

UiV st = gryn o > Faat [12]
Corrector step:
1 e
Un+lvn+1 — E (UﬂVﬂ+Un+1 V a1 +ZFCAAt) []_3}

where U is the state vector, V is cell volume, 4 is cell wall area, fluxes F, and F. are
given by equations [8] and [9] when CFS1 or CFS2 are used or directly by equation
[2] when GOD1 is used. When CFS1 or CFS2 is used, in odd timesteps, equation
(8] is used for the predictor and equation [9] is used for the corrector. In even
timesteps, the use of equations 8] and [9] is reversed. This procedure avoids the
generation of a preferred predictor-to-corrector direction and is found to improve
the quality of the solutions. It should be noted that when the computational grid
slides, V' £ yn+l # V™! and the areas must be carefully averaged values, other-
wise spurious source terms can be created. Barred quantities represent “predicted”
values. Only fluxes in the z-direction have been included for clarity. The forward

and backward difference operators normally contained in the predictor-corrector
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or second order predictor-corrector methods, and greatly reduces the production of

spurious numerical dissipation.

4. Stability

Explicit numerical solution of the Euler equations requires restriction of
the length of the computational timestep to satisfy the von Neumann necessary con-
dition for stability.® This condition states that the Courant-Friedrichs-Lewy (CFL)
number be at most equal to unity, which for this code becomes (lul +¢c)At/Az < 1
and (Jv| + ¢) At/Ay < 1 where [ul + ¢ and [v] + ¢ represent the largest eigenvalues
of the Jacobian matrices OF/3U and 4G/aU.

Limiting timestep length, At, to satisfy these conditions ensures that solution
errors do not grow in time without bound. This CFL condition applies to many
hyperbolic systems of equations as it requires that the anafytic domain of influence
lie within the numeric domain of influence. In this way, the computational fluid

model properly reflects the flow of information in physical space.

Reduction of the CFIL number much below unity may degrade solution accuracy
as the numeric domain of influence includes more unnecessary information. The test
cases presented in Chapter III were run with a conservative value of CFL=0.6 .

5. Convergence
Minimizing the computation time required to produce converged steady
state solutions is critical in constructing a useful computational code. Several tech-

niques have been used in the code to shorten convergence times.

Convergence is determined by the behavior over time of the density solution
residue given by
IS
1 22+l nyn2) 2
RES = {E 3> (‘M‘"‘“((i“ +;))) : [14]
N cells P
The residue is calculated at each timestep. Typical plots of residue behavior

are presented in Chapter III. As the solution converges, the residue decreases. The

nature of the MacCormack predictor-corrector method is such that rather than
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falling to machine zero, the residue oscillates about some finite value.? This provides
an estimate of the discretization error inherent in the finjte volume modeling of the

flow field.

One method used in the code to accelerate solution convergence is the abil-
ity to initiate calculation on a coarse grid containing relatively large cell volumes.
Requiring fewer calculations, the coarse grid solution converges rapidly. The fi-
nite volumes are then divided into smaller elements (by a factor of 2 or 3 in each
dimension) which retain the converged solution of the parent cell. Calculation re-

sumes in the refined grid requiring less time to converge than if started from initial

profile cause large transient numerical disturbances in the surrounding grid, which
increase the convergence time. To avoid this unnecessary time expenditure, the
initial velocity direction is distributed across the entire computational region to be
everywhere parallel to the grid which conforms to the projectile shape and tube
wall. For some projectile shapes, use of this technique is found to be necessary to
prevent code failure at high velocities due to void formation as the flow expands at
the projectile rear.

6. Calculation Near Flow Boundaries

Extrapolation of interior flow variables to solid boundaries and zone in-
terfaces has proven to be a most important factor affecting solution quality. Much
effort has been spent investigating various techniques for boundary calculations.

Only those producing high quality results are discussed here.

One of the following boundary conditions is imposed at each zone boundary:
i. Normal velocity specified

(e.g. zero normal velocity at a solid boundary)
ii. Normal velocity and pressure matched across zone boundary

(e.g. at a fluid interface)
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iii. Pressure specified

(e.g. zero pressure at a free surface)

For boundary condition (i), second order extrapolations of pressyre and normal

velocity are made to the boundary, and a first order Godunov technique (Riemann

the boundary produce significant errors (about 10 to 15%) consistently and third

order extrapolations tend to produce erratic results. For boundary condition (ii),

used to obtain the boundary pressure and velocity. For boundary condition (i),
the technique used is of the same type used for boundary condition (i). Second
order Godunov solvers were tested for boundary condition (i), but do not offer any

significant improvement over first order techniques.

For the internal cel] boundary one ce] removed from the zone boundary, two

boundary about the boundary. Using the additiona] “virtual” cells, second or third
order extrapolations/interpolations can be made to obtajn the fluxes at this par-
ticular type of cell boundary. For these conditions, second order calculations are

found to give much Inore consistent results than third order.

B —————



CHAPTER III

TEST CASES

Several test cases have been conducted to qualify the code. Test cases having
analytical solutions were chosen to permit direct comparison with code solutions.
Each case provides opportunities to evaluate a number of code features. These
test cases involve ideal gas flow with a specific heat ratio, v, of 1.4 . A single
computational zone is used. Test case results are presented graphically as overlays
of corresponding code and analytic solutions of the state variables p, u, v, e, and p.
These results demonstrate the most promising techniques incorporated in the code

to date.

A. Riemann Shock Tube Problem

Riemann’s Problem consists of describing the one-dimensional flow field pro-
duced in a shock tube. Flow is initiated by the instantaneous rupture of a diaphragm
separating high and low pressure ideal gas volumes initially at the same tempera-
ture. As the flow develops, a shock wave moves into the low pressure region while a
centered expansion fan moves into the high pressure region. A moving contact sur-
face separates the gas volumes. The flow configuration associated with Riemann’s
Problem is shown in Figure 3. Equations relating the properties of the resulting

flow regions are given in Reference 6.

Comparison of code solutions with the analytic shock tube solutions provides an
excellent test of the accuracy of the code. The ability of the code to model important
flow phenomena such as normal shocks, expansion waves, and contact surfaces is
also evident from this comparison. These tests also provide the necessary feedback
for “tuning” the code to ensure solutions of the highest quality are obtained when

applied to more complex higher dimensional flow problems. Figures 4 to 9 illustrate
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contact
surface
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Fig. 3 z-tdiagram of the Riemann shock tube problem

this tuning process as applied to a correction flux splitting method (CFS2). The cell
boundary valye interpolation/extrapolation weighting factor, ¢, is varied, coupled
with the inclusion or exclusion of a sharpening technique described below. The
value of ¢ ranges from zero (only interpolated values used) to one (only extrapolated

values used).

this surface is a challenging CFD problem. Thus, scrutiny of the energy solution

provides a critical means of evaluation of solution techniques.

Figure 4 shows the energy solutions plotted against shock tube position follow-
ing diaphragm rupture at a pressure ratio (Rp) of 100. A leftward moving expansion

fan and rightward moving shock wave and contact surface are characterized by the




tion of cell wal] values. Although the most numerically stable technique, dispersjon
causes discontinuitiess which should be sharp, to be spread out over several cells.
This is most evident at the contact surface and ip the rounding of the expansion

fan leading edge. The normal shock wave, however, is well modeled, typica] of

Figures 7 to 9, corresponding to Figures 4 to 6, show the result of a sharp-
ening technique. Whep reduction from higher order extrapofation/interpolation

techniques to first order calculation is called for, the value from the opposite side

show solution comparisons of the four state variables p, 4, e, and p for the tuned
(¢=0.37 with sharpening) CFS2 method at R,=100. F igure 15 shows the degrada-
tion of the solution at Rp=1000. Neither of the CFS methods Survive to produce
solutions at R,=3000. However, the GOD1 method remained stable at pressure

ratios as high as Ry,=10,000 as illustrated by Figure 18. Solution degradation is ap-
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parent but quite acceptable considering the severity of the test conditions. GOD1
solution quality at more moderate pressure ratios is equal to that of the CFS2

method.

The superiority of the Godunov method at high velocities is confirmed by a
related one-dimensiona] test in which the two gas volumes are given initial velocities
toward each other at a combined speed of 200 km /sec. Only the Godunov method
produces acceptable results, shown in F igures 17 and 18. The velocity errors pro-

duce large spurious energy drops in front of shock waves when the CFS methods are

end of a timestep with some fraction (usually 0.2) of the value at the beginning of
the timestep. By examining conservation of energy (which this technique violates)
and the p and e values in detail, the frequency with which this feature is invoked can
be determined. Using the Godunov flux solver, this feature is very rarely invoked,
even at impact velocities of hundreds of kilometers per second. The few instances

when the code uses this feature are usually at the beginning of the impact process,

conditions, the overwriting feature is never used.
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B. Oblique Shock Wedge Flow

Two-dimensional supersonic flow over a wedge produces an oblique shock wave
attached to the wedge vertex. Placed in a duct, the shock wave reflects from the
wall, keeping the flow parallel to the wall. The resulting flow field can be described
analytically.” This wedge flow configuration is readily modeled by the code. It
provides an opportunity to test the code’s two-dimensional computation capability
and accuracy in modeling flow interaction with solid surfaces. Also, this test permits
examination of solution degradation near shock waves not aligned with the principal

grid directions, a problem associated with many CFD codes.

Test conditions consist of a Mach 5.5 inlet flow, with y=1.4 , passing over a 24°
wedge and bounded by a solid wall. (These parameters were chosen to correspond to
previous analysis done on the oblique detonation ram accelerator concept.) Solution
data points are taken along vertical lines, (a) and (b), intersecting the initial and
reflected shock waves as illustrated in Figure 19. The state variables pu, v, e, and
p are plotted against distance from the wedge surface for the initial shock wave in
Figures 20 to 24, and for the reflected shock wave in Figures 25 to 29. The width
of the oblique shock wave is limited to three computational cell widths. It should
be noted that the analytic solutions, represented by solid lines in F igures 20 to 29
actually contain jump discontinuities rather than the finite thickness shock regions
shown in these computer generated graphs. Maximum errors in uniform flow regions
away from shock waves and boundaries are about 5% for p, u, and v behind each
shock wave. Maximum errors in p and e are 2% behind the initial shock wave and
7% behind the reflected shock wave. Errors at the duct wall downstream of the

shock wave reflection are slightly higher, but remain acceptable.

The wedge flow test cases are run using the grid refinement technique to ac-
celerate convergence. ‘The solution converges initially on a coarse grid (21x5). The
number of cells is quadrupled and the code is restarted. This process is repeated in
reaching the finest grid size (84x20). Figure 30 shows the resulting residue history.

The oscillatory nature of the converged residue is evident.
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C. Conical Shock Flow

The conical shock flow comparison is conducted to test the two-dimensiona]
axially symmetric low modeling capability of the code. For this test, a cone having
a half-angle of 30° is subjected to freestream conditions of Mach 3 with v=1.4 .
The supersonic flow develops a conical shock wave attached to the cone vertex,
resembling the wedge flow shown in Figure 19. Flow parameters between the shock
wave and the cone surface are constant on concentric cones having a common vertex
with the body.® The analytic solution used for comparison is interpolated from
graphs contained in Reference 9. Figures 31 to 35 show the state variables p, u,
U, €, and p plotted against angle from the cone axis. It should be noted that the
analytic solutions, represented by solid lines in Figures 31 to 35 actually contain
jump discontinuities rather than the finite thickness shock regions shown in these
computer generated graphs. Figures 36 to 40 are “close-up” plots of Figures 31
to 35 with expanded vertical scales to facilitate solution comparison in the region
behind the shock wave. Computational grid refinement (13x 5, 26x10, 52x20) is

used to accelerate convergence.

Close agreement is again obtained between analytic and code results. The
shock wave is spread over three computational cells, as in the wedge flow case.
Maximum errors in the region behind the shock are limited to about 1% for u, v,

and p and 2% for p and e.

The grid refinement option is also evaluated using the conical flow test case,
Figure 41 shows the solution residue history in which no grid size change occurs.
Only the finest grid is used. Timestep number 600 is chosen as the “convergence
point”, as the residue values clearly demonstrate a stable oscillation about a final
level. 505.5 CPU (central processing unit) minutes are required by the VAX 11 /750
computer to reach timestep number 600 in this “fine grid only” case. Figure 42
shows the residue history in which larger computational cells are subdivided into
quarters at timestep numbers 200 and 400 in reaching the fine grid size. Timestep

number 660 is chosen as the convergence point for comparison. The use of grid
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refinement reduces the convergence time to 270.5 CPU minutes which is 47% less
than the no-refinement time. Although the converged solution residue is less by
approximately a factor of two in the constant grid case, the slight decrease in ac-
curacy is an acceptable penalty to pay for a substantial reduction in convergence
time. Fine tuning the exact number of timesteps calculated for each grid size may
allow some further increase in code speed. Raising the CFL number to 0.9 is also

under investigation presently as another means of increasing code speed.
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CHAPTER IV

CONCLUSIONS

Much has been accomplished toward achieving the goal of developing a sophis-
ticated yet economical computational tool, capable of analyzing axially symmet-
ric or planar multi-component combustible flows up to hypersonic speeds. Many
tasks remain in further code development. Work in progress includes testing of the
code’s ability to model the combustion and detonation processes. One-dimensional
problem solving involving the impact of reactant gas volumes is yielding promising
results. Non-ignition, Chapman-Jouget detonation, and overdriven detonation as

impact velocity is increased have been satisfactorily modeled.

Preliminary work on expansion of the code to include viscous transport and
radiation effects has begun. This will permit boundary layer, separated flow recir-
culation zones and projectile ablation to be modeled. Also, inclusion of tabﬁlated
thermodynamic data (from the JANAF tables or from the SESAME!? tables ob-
tained from the Los Alamos National Laboratory) will soon allow general equation

of state calculations to be performed.

The code, in its present form, provides satisfactory results for the stringent
test cases presented herein. The outlook is promising for its application to the ram

accelerator project as well as other related fluid dynamics problems.
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