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The transient response of supersonic duct flows to
the sudden initiation of combustion is of interest for many
practical gasdynamic devices. Such flows may be considered
"generalized” ramjets, for which steady-state solutions are
well known. The transient response is approximated as a
solution to the quasi-one-dimensional Euler equations. These
equations are modeled by a finite difference technique that
is second order accurate in time and first order accurate in
space. The numerical model is applied to a fixed geometry
convergent-divergent nozzle at various inlet velocities and
with three different working fluids. The_transient response
is classified as stable or non-stable and the heat addition
rate is compared to the maximum heat addition leading to a
stable steady state solution. Typical results for stable and

unstable transients are presented,
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I. INTRODUCTION

Supersonic duct flows may be found in a number of
gasdynamic devices. Among them are jet engines, shock
tubes, rocket engines, and light-gas quns. Of these, only
the jet engine has significant heat addition downstream of
regions of supersonic flow. In turbojet or turbofan
engines regions of heat addition are typically separated
from regions of Supersonic flow by turbo-machinery. Thus
the supersonic duct with heat addition may be considered a
"generalized” ramjet. This "generalized" ramjet is
composed of a duct with varying area containing a region or
regions of heat addition, or combustion. This corresponds
to a ramjet’s diffuser, combustor, and exit nozzle. For
subsonic combustion a normal shock is required at some
point in the flow. The location of this shock is dependent

on nozzle exit conditions and heat addition rates.

The known steady-state results for the ramjet are

based on an ideal quasi-one-dimensional analysis. *"Ideal
quasi-one-dimensional” is defined as an analysis which
ignores viscous effects and allows entropy increases only
at normal shock waves or within regions of heat addition.
Also, all flow variables are considered constant across

each cross-section. Velocities normal to the main flow

direction are considered small with respect to the main
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flow velocity. The only two-dimensional effect included is
that of the area change. Despite the number of simplifying
assumptions stated above, the analysis still yields a good
first-order approximation of the actual device behavior.
The steady-state ideal ramjet equations form a solution to
the steady-state quasi-one-dimensional Euler equations. The
transient response is a solution to the time-dependent
quasi-one-dimensional Euler equations. These equations may
be modeled in several ways, such as the method of
characteristics or various types of finite difference
techniques. The method of characteristics fails in mixed
supersonic-subsonic flows. Finite difference techniques
may be applied with an accuracy comparable to the
steady-state solutions, and can be used in all types of
flows. Steady-state solutions to ramjet combustion and

shock location are given in Chapter III.

The transient response of a supersonic diffuser to the
initiation of combustion downstream of the diffuser does
not lend itself to simple solution. Combustion processes
that yield stable steady-state solutions may have transient
responses that cause the diffuser to "unstart". The
"unstart" condition causes the ramjet to be a net drag
producer instead of a net thrust producer. For a ramjet

this is totally unacceptable, however, there may exist
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gasdynamic devices in which shock movement through a
diffuser or nozzle may be part of the normal operation of
the device. For many cases, the transient response is of

interest.

In order to model this transient response a finite
difference model of the Fuler equations of fluid motion is
developed (Chapter III). This model is implemented by a
FORTRAN program included as Appendix A. To verify the
accuracy of the finite difference technique used to model
the equations, results from this technique are compared
(Chapter IV) with analytic solutions to two classical

gasdynamic problenms.

A single ramjet configuration is introduced in Chapter
V for extensive analysis of the effects of working fluid
and inlet velocity on the transient résponse. A graphical
representation of a typical stable and unstable response is
given. The results of three different working fluids at
various inlet velocities are presented in tabular form.
These results yield insight into the relative importance of
parameters describing the ramjet configuration to the
behavior of the transient response. Conclusions based on
these results are given and recommendations are made for

further investigation (Chapter VI).



II. BACKGROUND

A. RAMJET PARAMETERS

1) Description

In Chapter I it was noted that a supersonic duct flow
may be characterized as a "generalized" ramjet. Several
parameters are used to describe the configuration of any
particular ramjet. These parameters are the area profile
of the diffuser, the distribution and timing of the energy
release in the combustion region, the nature of this enerqgy
release, and the exit condition of the ramjet. For the
“generalized" ramjet these parameters may take on values
significantly different from those considered in propulsion
applications.

2) The Diffuser

The diffuser, for subsonic combustion in steady
operation, is typically a convergent-divergent nozzle with
a normal shock located downstream of the nozzle throat.

The minimum entropy increase is obtained using a throat
Mach number of unity and an infinitesimally weak normal
shock located at the throat. In the ideal analysis,
perturbations to the steady-state solution are absent, thus

this configuration is neutrally stable, on the boundary of
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stability. Since the quasi-one-dimensional ideal relations
exclude boundary layer, turbulence, and other
two-dimensional effects, this configuration is, for real
devices, unstable. In practical configurations the Mach
number at the throat must be greater than unity and the
shock must be some distance downstream of the throat.
Typical throat Mach numbers for real, stable devices are in
the neighborhood of 1.3 . Typical normal shock locations
are such that the Mach upstream of the shock is 1.5 .

The unstable behavior is called an "unstart”. The
nature of the instability is that if the flow is perturbed
such that the normal shock moves upstream of the throat the
shock continues to propagate upstream through the diffuser

and is disgorged.

3) Heat Addition Region

The second parameter describing a particular ramjet

configuration is the type of heat addition or combustion.
Heat addition may take place subsonically or
supersonically. Supersonic combustion ramjets (SCRAMJET)
are the subject of considerable study. However, in
practice, all combustion is done subsonically. In a
generalized ramjet the heat may be added by chemical
reaction, radiation, or by electric discharge, perhaps

forming a plasma. 1In all of these cases the character of
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the working fluid may be altered dramatically through
dissociation, chemical reaction or ionization. This
introduces an additional complexity into the analysis,
especially if a finite difference technique is

contemplated.

4) Downstream Exit Condition

The downstream exit condition may also be subsonic or
supersonic. To maximize jet velocity and isolate the ramjet
from the downstream conditions, the exit condition is most
often chosen to be supersonic, or exactly sonic. This can
be achieved in two ways; by using a choked
convergent-divergent nozzle downstream of the combustion
region, or by adding sufficient heat to thermally choke the
flow downstream of the combustion region. The choke point
Mach number is maintained at unity by the location of the
upstream normal shock in the diffuser for either case.
Steady-state solutions ¥ield unique values for shock
location for a given heat addition and downstream area
profile for supersonic or sonic exit conditions only.
Subsonic exit conditions require some knowledge of
downstream conditions beyond the exit. With a subsonic
exit, the nozzle exit pressure usually can be assumed to be

known.



B. TRANSIENT RESPONSE

1) Qualitative Description

In light of the preceding discussion, a rough
description of the transient response of a supersonic duct
flow to the initiation of combustion can be formulated. If
sufficient heat is added to choke the flow in the
combustion region, a shock will form and propagate upstream
into the diffuser. Depending on the configuration of the
diffuser, the upstreanm conditions, and the amount of heat
released, the shock may or may not propagate through the
throat of the diffuser. If the transient response does not
unstart the diffuser, the flow should settle into a

steady-state solution.

2) Solution Technique

The rough description of the preceding paragraph,
however, does not answer the question of whether or not the
diffuser unstarts. Similarly, the steady-state, ramjet
equations do not answer this question. To answer this
question with at least the same order of approximation as
that of the steady-state solution, a solution of the
non-steady, quasi-one-dimensional Euler equations is
required. A finite difference method is employed to

provide numerical solutions.
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With the advent of Super-computers, finite difference
techniques to solve the full Navier-Stokes equations have
been developedl. The computational cost for
accurate modeling using these techniques, however, is still
quite prohibitive. Many of'the techniques are still
developmental and not readily applicable to engineering
problems. The Euler equations are thus chosen as the basis
of the present analysis, and as with the steady-state
equations, the flow is taken to be quasi-one-dimensional
with a varying flow area. The numerical method, given
sufficient numerical accuracy, should yield transient
solutions of the same level of accuracy as the steady-state

one-dimensional ramjet equations.



III. THEORY AND METHOD

At this point the governing equations of this analysis
are stated explicitly. The steady-state ramjet equations,
the quasi-one-dimensional Euler equations, and the finite
difference method used are discussed. To verify the
accuracy of the finite difference technique, results from
this technique are compared (Chapter IV) with analytic
solutions to two classical gasdynamic problems. The
equations leading to the analytic solutions of these two
test problems are given in Chapter 1IV.

A. STEADY STATE RAMJET EQUATIONS

1) Isentropic Flow Rel&tionshigs

The solution of the steady-state duct flow problem
assumes isentropic flow except at normal shocks. The
relationships between static and stagnation quantities are
given by the following equations (Kuethe & Chow 1976, p.
207)2,

P . [ 1+ Yy -1 2 ]«y/(y-l)

M (1)

-1 2 7-1/(y-1)
Y } Y (2)



2
c T -1 2 1-1
c, T 2

Where y is the ratio of the specific heats. Implicit

in these equations is the assumption of the ideal gas
equation of state, Eq. 4. Also it is assumed that the gas
is calorically perfect. The speed of sound of the gas is
given by Eq. 5.

P = PRT ‘ (4)
C=JYRT (5)

2) Area change Relations

The equations describing the ramjet problem are
required to satisfy both the continuity and momentum
equations. These may be written in the forms of Eq. 6 and
Eq. 7 respectively.

v dp dA
— s+, (6)
\% s} A
2y g
d[YL) +E . (7)
2 P

Satisfaction of these two conditions, as well as the

isentropic flow relationships, yields the following result.

A 1 [
A M

2 -1 2)7 (y+1)/(2(v-1))
( 1+ )] Y M (8)

Y+l
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3) rmal Shock Re ns

The isentropic relations above do not apply across
normal shock waves, with the exception of Eq. 3, which only
requires that the flow be adiabatic. In order to find the
change in flow variables across the shock, the normal shock
relations(Shapiro 1954, p.995)3, or "jump conditions" must
be used. These are given by Egs. 9 - 11.

e
-1
u;=2 Y , (9)
Y 2
-1
Y-IM"
P -1
BE A SV (10)
P, v+1 X y+1
Yy -1 2 2y 2 )
1l + M -1
{cy)z Ty ( : } ( v-17 (11)
e | e 32 7
Cy T; (y + 1) M2
2(y - 1) X

These jump conditions satisfy the Euler equations and
Egq. 3.

4) Constant Area Heat Addition
a. Thermally Choked Flow

For the purposes of the current model only constant
area, subsonic heat addition is considered. Application

of continuity, the one-dimensional momentum equation, and
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the enthalpy form of the energy equation gives the
following relationships(Oates 1984, p.48)4.

2
To, M%) 2,
= ) J
T,, (M%)
2 -1 2
M [1 + M }
£(M?) 2 (13)
(1 + yM%2 )2
Toz [ 1+ ql-z ] (14)
Toz Cp Toz

For the case of thermally choked flow the Mach
number after combustion is unity. Eq. 12 then reduces to

Eq. 15.

To2 (1 + yM?)?2
= (15)

T -1 2
01  2(y+1) (14»"2 u]

b. Unstart Heat Addition Limit

The maximum heat addition before unstart corresponds
to a shock location at the throat. Solving the isentropic
relations for each side of the diffuser and the normal
shock relations at the throat, we may obtain the Mach
nueber at the entrance to the combustion section. Knowing

this, the heat addition for unstart is given by Eq. 16.

T
02
G-z =G T, [ 1- T } (16)
01



13
Several of the equations governing supersonic duct
flows with heat addition and area variation are not
analytically invertible. Iterative techniques(Conte & de
Boor 1980, pp. 74~81)5, such as the bisection method and
Newton’'s method, provide the required solutions in those

cases,

B. FINITE DIFFERENCE METHOD

1) Overview
The finite difference method is a computational fluid

dynamics (CFD) approxzimation of the Euler equations of

fluid motion. The differential equations are approximated
by one-sided difference operators in a predictor-corrector
flux-split scheme. The method is explicitly factored and
second order accurate in time and first order accurate in

space.

2) Quasi-One-Dimensional Euler Equations

The one-dimensional Euler equations may be stated in the

conservation law form as Egs. 17 a - c.

au  aF |
— —— = () (17a)
at ox

P pu
U=] pu (17b) ; F= | pu® + p (17¢)

e (e + p) p
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To include the effect of area change requires modification

of the second term and the inclusion of a momentum source
term. The quasi-one-dimensional Euler equations may then be
written as Egqs. 18a and 18b.

0
H aA
30 (1 3FA _H 2aA (18a) ; H= | p (18b)
at A 3ax A 3x V 0

3) Flux-Split Technique

Linear stability analysis of explicit one-sided
difference operators requires that they be applied such
that the differencing follows the direction of wave
propagation. Thus for one-sided differencing applied in a
single direction, the difference must be taken upwind and
the flow must be supersonic. For subsonic and/or reversing
flows some intelligence must be invested in the method to
determine the proper differencing direction. The flux split
technique developed by Steger and Rarming (1979)6 provides
this capability by applying the stability analysis to the
uncoupled form of the quasi-one-dimensional Euler equations
(Eqs. 19 a - d).
aU  gaQ”? A _ H aa

—_—
at A oax A ax (19a)
oaQ~?! 8F (19Db)
au
A 0
A = [ 1 5 ] (19¢)
0 2 "3

*1 = u, Az =u+c, 13 =y - ¢ (19d)
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The result of this analysis is that the flux vector F is
split into two parts on the basis of the local
characteristic slopes -- the eigenvalues. Since the
eigenvalues give the direction on information propagation
the one-sided difference operators may be applied stably.
This correlates to the gasdynamic idea of following
characteristic curves of both families. However it is
important to stress that this technique is not the method
of characteristics. Also it should be noted that the
flux-split technique requires that the equations be
homogeneous of degree one. This requires that pressure (p)
be a linear function of the total energy (e), which is
satisified by the ideal gas equation of state. The
flux-split Euler equations are given by Egs. 20 a - f.

aU 1 ( aFtA  aFa H aa
ez ( + = — & (20a)
at A ax ax A ax
1t M S S & (éOb)
MOTTTTT 8 Ay s 2
+ + .+ _ +
Fr=Fa " %2 (20c)
F' o= Fr (3 70,7207 (20d)
[ ZBv1 + v, + vy
A+ A+ A
Fo(v ,v_,v) =8 [ 2BV A + v, + vy (20e)
I'"177%2""3 2y v v
A e 2z 22,0
i BV 2, 2 "2 2 73 ]

(3 - )y, + vs)cz
B=vy-1; W= 2 (20f)
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Eq. 20b defines the flux-split eigenvalues; Eq. 20c and 20d
define the flux-split flux vectors in terrns of those

eigenvalues. The eigenvalues and flux vectors defined above

also have the following qualities.

F=F +F (21)

F = F(X ,A,,4)) (22)
+ » -

Ag =ty (23)

With the two flux terms consistently stable in one-sided
spatial differencing, any number of time differencing

schemes may be employed to advance the solution in time.

4) Description of Predictor-Corrector Technique

a. Overview

The algorithm used in the FORTRAN program used for
this research (Appendix A) uses a predictor-corrector schenme
and spatial differencing treated as a finite volume model,
as shown in Fig. 1. The finite difference equation for the
predictor-corrector scheme is given by Egqs. 24 - 28.

Predictor Step:

N¥FT n at + -
Ui = Ui - Zx_—g;—;(vx?iai*‘%.‘. AxPi 1-3" HiVxAi_B‘)-P AtQi (24)

Corrector Step:

n+i _n at ¥ - — -—
Ui = Ui - m(VxFiAiﬁ*' AxFiAi_;," Hivai*'if)+ AtQi (25)
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n+1 1 n+1 n+1
[ } (26)

Ui + Ui
Vin = Qi - Qi_1 Backward Difference Operator (27)

Ain = Qi+1 - Qi Forward Difference Operator (28)

The "barred” quantities are the "predicted" values of the
flow variables. The "double barred" quanities are the
“corrected" values and are calculated on the basis of the
“predicted” values. The net change in the U vector

for a single time step is the average of the change in U
for the predictor step and the change in U for the
corrector step due to the averaging of the “"predicted" and
“corrected” values. The Q term is a generalized heat
addition per cell, per unit time. This term is defined by
the type of heat addition used and is specific to that
type. A specific Q term is defined in Chapter V for use in
the flow modeled in that chapter.

The fluxes through any surface are calculated in terms
of the eigenvalues of the finite volumes (cells) on one
side of the surface. This prevents the fluxes at any
particular surface being determined by more than three
characteristics. The cell used to determine the
eigenvalues is alternated between the two sides of the

surface on prediction and correction steps to prevent a
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Ai-1/2 Ai+i/2
/) VOL;
~ /
\
i:l i. i;;
am—— \
A x

Figure 1. Finite Volume Model
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numerically preferred direction. The technique is also

strictly conservative in that a flux out of a cell on one

side of a surface is the flux into the cell on the other.

b. Accuracy

The numerical model can be shown to be second order
accurate in time and first order accurate in space. A
simple inspection of the each element of the algorithm
verifies this result. The time differencing is a
predictor-corrector scheme, in itself second order
accurate. The spatial derivatives are modeled by first
differences, well understood as first order accurate. The
rigorous analysis of the numerical accuracy of the
algorithm is beyond the scope of this work. Instead the
algorithm is checked against two known solutions to
gasdynamic problems (Chapter IV).

c. Stability
Linear stability analysis of the predictor-corrector

flux-split finite difference equations yields the
stability condition of Eq. 29.

at
1 2 (29)
Ax ju+tc)
The right hand group in Eq. 29 is also known as the CFL

number. The value of 1.0 for the CFL number is only
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neutrally stable and, thus, for actual calculations is
never used. Typical values for an upper bound on the CFL
number are on the order of 0.9. This value is used for all
calculations in Chapters IV and V. The actual time step is
the At such that Eq. 30 is satisfied for every cell.

at
CFL & (30)

max AX |u+c|

A local CFL number less than one introduces numerical
dissipation and diffusion. These effects can be shown to
broaden the numerical representation of shock waves, cause
sharp material boundaries, such as contact surfaces, to
average and diffuse, and increase the entropy of the
fluid, thus raising temperature and energy levels in the
fluid. When analysing CFD results it is important to note
these effects in order to correctly interpret the

results.



IV. VERIFICATION OF NUMERICAL METHOD

A. TEST GASDYNAMIC PROBLEMS

The rigorous theoretical analysis of the numerical
accuracy of the CFD technique employed here is beyond the
scope of this paper. Instead the algorithm is checked
against two known solutions. The two test problems chosen
are: 1) Riemann’s problem; 2) ‘a shock-wave
area-discontinuity interaction. The first problem is
chosen to verify the ability of the computer program to
correctly follow the transient response of various
one-dimensional gasdynamic phenomena. The second is chosen
to check the accuracy and ability of the program to model
the area-change terms in Eq. 20a.

This type of verification has two major advantages over
theoretical analysis. First, it verifies that the computer
program accurately models the intended equations.
Theoretical analysis only yields information on the the
behavior of a particular algorithm if the algorithm is
programmed into the machine correctly. Benchmark testing is
the only way to truly verify any given computer program.
Second, it identifies not only accuracy in general, but

also yields information on which particular physical
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Phenomena (such as normal shocks, contact surfaces, and
expansion fans) are best modeled by the technique and which
are not represented as well. This information can help
build a family of solution techniques for various problems
with greater insight as to which technique will yield the

best solution for a given problem.

B. RIEMANN'S PROBLEM

Riemann’s problenm (Shapiro 1954, pp. 1007-1009), also
known as the shock tube problem, involves a long tube
divided into two sections by a diaphragn (Fig. 2.). The
left-hand side of the tube is filled with high pressure
gas; the left with low pressure gas. In our test example,
the gas has the same temperature and sound speed on each
side of the diaphragm. HWhen the diaphragm is burst, a
right moving shock propagates into region 1 and an
insentropic expansion fan propagates into region 3. The
pressure ratio across the shock is determined by an

iterative solution to Eq. 31.

- P .

2
=2 .
P, P -3
5—’-=-—5— 1-*2 P (31)
P Y
3 2 + 1
]1+Y {32--1}
X 2y P, J
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The remainder of the flow variables are determined by the
appropriate use of the moving shock equations (Shapiro
1954, pp. 1000-1002) and the isentropic flow and normal

shock relations given in Chapter III.

The performance of the CFD program is presented in
Fig. 3. The intial pressure ratio of the shock tube problem
shown is 10. It is apparent from Fig. 3 that the program
follows the expansion fan and shock speed very well, and
represents the shock with reasonable steepness. A typical
value for the shock width is 10 cells. The maximum error
for the sound speed in the expansion fan is 2.0%. The
velocities and values of sound speed in the constant value
regions vary by a maximum of 0.7% for velocity and 0.5% for
sound speed from their respective analytic values. However,
the ability to model the contact surface between the
shocked and the expanded gas 1is severely limited, with
errors on the order of 10%. This limitation is due to
numerical averaging of the cell in which the contact
surface should exist discretely. This numerical diffusion
or mixing may be eliminated by use of a “sliding grid"
tranformation (Ribe, Christiansen, and MacCormack 1983,
pp. 3-5)7in which cell boundaries move with material
boundaries. For the flow investigated in Chapter V this is
not an important limitation as no material boundaries or

contact surfaces exist within the flow.
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C. SHOCK-WAVE AREA-DISCONTINUITY PROBLEM

The second test pProblem is the interaction between a
shock wave and a discontinous area change. 8ince the
Riemann problem is for a constant area tube, a test of the
area-change effects is required. The area-change problem
(Shapiro 1954, pp. 1026-1027) involves a normal shock wave
propagating into still air and encountering a discrete
change in the area profile (Fig. 4). A “transmitted” shock
continues to propagate into the region of reduced area,
while a "reflected" shock propagates upstream into the

previously shocked flow. Good performance in this test
gives a good indication of the ability of the code to
handle area-change effects in general. The analytic
solution to this problem requires extensive use of the
moving shock relations, and an iterative technique, the

details of which are outside the focus of this paper.

Fig. 5 shows the computational result for this
problem. Table 1 shows the comparison of computational and
analytic solutions to the area discontinuity problem.
Results are given for two different cases. For the first,
the area change is modeled by two cells, for the second the
area change is modeled by five cells. Errors in general are
small, on the order of a few percent, reasonable for the

first order accurate area-change terms. The contact
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COMPARISON OF ANALYTIC AND
SHOCK-WAVE AREA-DISC
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TABLE 1

NUMERICAL RESULTS TO THE
ONTINUITY PROBLEM

Region Pressure Density Sound Shock
Error % Error % Speed Speed
Error % Error %
Iwo-Cell Model
1 exact exact exact 0.9
2 < 0.1 < 0.1 ¢ 0.1 2.7
3 3.1 < 0.1 0.7 -
4 3.0 4.5 0.6 -
5 3.0 4.5 0.6 -
Five-Cell Model
1 exact exact exact 6.9
2 < 0.2 < 0.1 < 0.01 1.0
3 1.6 1.1 0.7 -
4 < 0.2 1.0 < 0.3 -
5 ¢ 0.2 1.0 ¢ 0.3
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surface between regions 4 and 5 does not appear in the CFD

result. The change in sound speed across this contact
surface 1is substantially less than the error of the

approximation, thus this feature is lost.

As Table 1 shows, the values of flow variables within
the constant value regions vary from the respective
analytical values by 0.1% to 6.0%. The shock speed for the
two-cell model is accurate to within 2.7% for both the
transmitted and reflected shocks. The shock speed for the
transmitted shock for the five cell model is significantly
different, an error on the order of 6.9%. There are two
major reasons for this discrepancy. First, the area change
is now significantly different from discontinous, and
second, the shock speed is calculated by a simple time

difference of shock location from two output times. This

large value of at. The shocks are represented over
approximately eleven cells for both transmitted and

reflected shocks for both cases.
D. CONCLUSIONS

The two problems of this chapter comprise a good test
of the ability the code to solve the quasi-one-dimensional

Euler equations. The computational results compare
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favorably with the analytic solutions. The exception to
this is the contact surface which spreads unacceptably due
to numerical diffusion and mixing. The problem addressed
in Chapter V does not contain this feature. The algorithm,
however, is shown to correctly model the moving shock,
expansion, and area-change effects. Thus the results of
Chapter V can be viewed with reasonable certainty, and

accuracy to within a few percent.



V. APPLICATION OF NUMERICAL METHOD
TO TRANSIENT RESPONSE PROBLEM

A. PHYSICAL CONFIGURATION OF DEVICE MODELED

requires a large number of unknowns varying in almost
limitless combination. To provide preliminary
understanding of the time-dependent response of the device
a single geometry is chosen. As seen the Fig. 6, the
device investigated in this chapter consists of steady,
Supersonic, upstream flow éncountering a
convergent—divergent nozzle. The area at the nozzle throat
is 40% of that of the inlet, Following the nozzle section
is the zone in which heat is released. The heat release is

such that in steady flow the duct is thernally choked.

With only limited prior knowledge of the transient
response to combustion inititiation, the downstreanm
boundary condition must be able to correctly model both
Supersonic and subsonic exit conditions. For the purposes
of the model, no Pressure waves are allowed to propagate
upstream from beyond the downstream boundary. This
condition is called the "no reflection condition." This is
automatically true if the Mach number at the exit is
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Convergent-Divergent Nozzle (Diffuser)
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greater than unity, and enforced for Mach numbers less than
unity.

Although the device investigated in this chapter has a

fixed geometry, the area profile, the gas characteristics,
and the inlet velocity are all input variables to the CFD

program.

B. HEAT ADDITION MODEL

1) Definition of the Q0 Term

The heat addition is modeled by an idealization of the
combustion process. The Q term from Eq. 24 and
Eq. 25 is constructed by multiplying the heat release
Peér unit mass by the incoming mass flow, which is constant.
This number is divided by the total volume of the
combustion section to yield the énergy per unit volume per
cell per time step. This value is added as a source term
to the €énergy equation by means of the Q term. The
value of Q is set to zero for all cells outside the

combustion region.

2) Igqnition and Chemical Composition

An extensive model of the ignition Process 1s outside
the focus of this work. For this analysis, combustion is
modeled as beginning in a single cell and Propagating at
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the local flow velocity to a fixed downstream boundary of
the heat addition region. At the flow velocities of this
analysis, however, the time required for this ignition
Process is small in comparison to the time for shock
movement, thus the effect on the transient is considered to
be small. The chemical composition of the gas is assumed
to remain constant throughout the combustion process. The
molecular weight and Y are taken to be the average of the

actual values before and after combustion.

C. STABILITY OF AREA CHANGE TERMS

1) Numerical Unstart
=~azfcrlcal Unstart

The effect of numerical dissipation plays an important
role in determining the finite difference grid used for a
particular configuration. The dissipative terms cause both
an increase in temperature of the fluid and a decrease in
the flow velocity, both Yielding a decrease in local Mach
number. Thisg is eéspecially important at the throat of the
nozzle where the Mach number may already be near unity. For
coarse grids, this effect may yield the numerical result of
a throat Mach number less than unity. This causes a
numerical instability in the form of a "spontaneous
unstart" for configurations whose ideal

quasi-one-dimensional result is stable supersonic flow.
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2) Area Profiles

Area profiles may be classified into three major
groups, log profiles, linear profiles, and Mangler
tranformed profiles. The log profile is defined as one in
which the area of the next grid point is a constant
fraction (or multiple) of the previous one. This profile
tends to be both the least dissipative and the least
similar to real devices. The linear area profile is one
for which the area is a linear function of distance along
the device. The Mangler transformed area profiles
correspond to the quadratic functions describing the area
profile of a cylindrical duct with a conical center-body.
For all of these types of area profiles, the function or
constant may change at the throat of the device for
convergent-divergent nozzles. For each of the last two
profiles, special attention is required at the sharp corner
Produced at the throat by the functions used. A thorough
understanding of the stability characteristics of the
various area profiles yields a family of area profiles
suitable to model different device configurations
accurately, stably, and efficiently. The area profiles
used for this analysis are log profiles, both for their
stability and to allow minimum grid sizes for maximum

Computational efficiency.
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D. THE HEAT ADDITION RATIO (HR)

For any particular set of upstreanm conditions and
working fluid, a maximum steady-state heat addition per
unit mass AHM is uniquely defined by the steady-state
ramjet equations given in Chapter III. A flow

configuration is quantified by the ratio of the actual heat
release per unit mass for the combustible mixture AﬁA
divided by the Baximum steady-state heat addition AHE.
This ratio 1s called the heat addition ratio (HR) defined

by Eq. 32.
aHp

HR = (32)
AH
M

A value of unity for HR is only neutrally stable even for
the steady-state case. For analysis of the transient
reésponse several values of HR less than unity are
investigated to find stable configurations. HR values
greater than unity are investigated to study the response
of strongly unstable configurations.

E. TYPICAL TRANSIENT RESPONSE

As noted above, the transient response may be
classified as stable or unstable. The numerical results

clearly show this behavior and follow the qualitative
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description of Chapter II. The results from various
working fluids are sufficiently similar to allow
presentation of a single "typical"” response for stable and
unstable cases. These typical results are given by
Figs. 7 - 12. Shock strength and speed, final shock
location (for stable configurations), and characteristic
time for the transient response may all vary for different
configurations. The essential characteristics of the
résponse are, however, the same. The typical responses
shown use the air-hydrogen mixture defined below. The
stable result is for HR = 0.8. The HR value for the
unstable result is 1.0.

Figs. 7 - 9 show the typical stable transient response
for the modeled device. Each figure contains graphical
output for duct area, static pressure, local flow velocity,
and sound speed at a single time. The upper graph of each
figure contains the duct area and pressure information,
which shows the shock wave and the heat addition effects
clearly. The lower graph shows velocity and sound speed,
which are displayed together to show the shock and choke
point more clearly than if they were presented Separately.
The three figures are the ouput at three different times,

giving a "motion picture* representation of the transient.

The four quantities chosen for graphical display form
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a complete set of information about the flow at that
particular time. The duct area is include to show the
physical geometry of the convergent-divergent nozzle, the
full scale, open duct, inlet area decreasing to the minimum

throat value, and increasing back to the open duct area.

Fig. 7 shows the flow roughly a millisecond after the
initiation of combustion. At this point the heat addition
has attained the maximum prescribed value. Note that
Fig. 7 shows the shock wave at the base of the nozzle.

In Fig. 8 the shock is substantially into the nozzle, and
Fig. 9 shows the shock just downstream of the nozzle in the

steady-state location.

The typical unstable transient response shown in Figs.
10 - 12 is very similar to the stable response and the same
graphical presentation 15 used. The significant difference
between the two responses is seen in Fig. 12. 1In Fig. 12

the shock is upstream of the nozzle, causing unstart.

F. RESULTS FOR VARIOUS GAS MIXTURES

1) Definition of Gas Mixtures

The transient responses for three different
stoichiometric gas mixtures, air-hydrogen, air-methane, and

oxygen-methane, were investigated. As the fluid is assumed
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TABLE 2
Avauca;aﬂmuuu.unacmauau.nuwamnxsrvncns’uxnnms
Gas Molecular GCanma Heat Relesase
Mixture Neight Y Per Unit Mass
Air-Hydrogen 22.90 1.38 3.23202 x 10" erg/gm
Air-Methane 27.63 1.3196 | 2.64600 x 10'° erg/gm
Oxygen-Methane 26.66 1.2089 | 1.0055 x 10'' erg/gm

Chenical Formula

Afr-Hydrogen oa + 4!1 + ZHz — 2u,o + Olz
Air-Methane 2(')z + llz + aa‘ —— coz + zazo + Olz
Oxygen-Methane 2()z + Qi‘ . — (:()z + zuzo

both to combust and to have constant physical properties,
values for both Y and molecular weight are the average of
the initial and the combusted properites. The chemical
formulas and physical propert;es of the three gas mixtures

are given in Table 2.

2) Results for Various Configgrat;ggg

The behavior of the transient responses for the three
gas mixtures is given in Table 3 for several values of HR
for each gas mixture. The HR values range from 0.80 to
1.10. This range 1is chosen to insure both stable and
unstable transients. Inlet velocity is given for each
case. The stability of a transient is determined by whether

or not the solution settles to the steady-state result. Time
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TABLE 3
SUMMARY OF TRANSIENT RESPONSE BEHAVIOR
FOR VARIOUS CONFIGURATIONS
Gas Inlet Time for
Mixture HR Velocity Stability Transient
(km/sec) Response (sec)
Alr- 0.80 | 1.01287 | Stable 3.6 x 107°?
Radeiy 0.85 | 0.99476 | Stable 4.9 x 107?
0.90 | 0.97848 | Stable 4.5x10°
0.95 | 0.96427 | Unstadle 3.6 x 1072
1.00 | 0.95229 | Unstable | ¢ 3.6 x 10°°
:i:iane 0.80 | 0.89132 | Stable 5.7x10°°
0.85 | 0.87591 | Stable 5.7 x107°
0.90 | 0.86220 | Stable 5.8 x10?
0.95 | 0.85020 | Unstable 4.2x10°
1.00 | 0.83967 | Unstable | ¢ 4.2 x 10°°
::{E::; 0.80 | 1.27848 | Stadle 3.5x10°°
0.85 | 1.24543 | Stable 3.5 x 1073
0.90 | 1.21595 | stable 3.5 x107°
0.95 | 1.18672 | Stable 3.5x10°°
1.00 | 1.15779 | Unstable 5.5 x10°?
1.10 | 1.11657 | Unstable | ¢ 3.5 x 10~?

Conditions for all Configurations:

Inlet Pressure.....

Inlet Temperature..........
Inlet Area................
m“t Ar“‘.....‘.........

300 K

1.295 x 10a dynes/sq. cm

10.0 5q. ca
4.0 3q. cm

settle into the steady-state result.

A discussion of the

implications of Table 3 is included in Chapter VI.




VI. CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER WORK

A. CONCLUSIONS FROM TRANSIENT RESPONSE ANALYSIS

The behavior of Several combinations of working fluid
and inlet velocity was presented in Chapter V. FEach of the
solutions gave results similar to those of the typical case
which was presented. Graphical results similar to those in
Figs. 7 - 12 were obtained for each of the configurations,
Due to Qhe high degree of similarity these graphical

results are not presented here.

The summary of transient behavior indicates a simple
working criterion for determining the stability of a
configuration without complete numerical modeling. This
stability criterion is based on the value of the heat
addition ratio (HR). As shown in Table 3, for all cases
but one, a value of HR = 0.95 yields an unstable transient
response. For all cases, an HR value of 0.90 results in a
stable transient. This result is of greater interest in
light of the differences in working fluid and inlet
velocity. This criterion is useful in the determination of
stable operating velocites for a given working fluid, or
may yield the best candidates for a working fluid at a
given 1inlet velocity.
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One further note on the stability of the transient
response is that it is highly sensitive to the inlet
velocity for a particular gas mixture. The velocity
difference between the strongly stable transient of HR =
0.80 and the strongly unstable response of HR values of
1.00 or 1.10 is as small as 5.8%. This sensitivity to
inlet velocity indicates that conservative values of HR are

required to insure stable initital response. Also, further
work to refine the accuracy of the numerical model is

indicated by this result.
B. RECOMMENDATIONS FOR FURTHER WORK

The test problems of Chapter IV indicate that the numerical
model is accurate to within a few percent. This meets the
first order approximation criterion set in Chapter II for
the accuracy of the model. As, such the model may be
applied to various other configqurations and other similar
gasdynamic problems. Variation in upstream or downstream
boundary conditions, acceleration of the device, alteration
of the heat addition term, or the effects of variation in

geometry, all may be investigated with this model.

With the sensitivity of the transient response to inlet

velocity, and the desire to maximize the heat addition for
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certain gasdynamic devices, such as ramjets, the
developement of a model of a higher order of accuracy for
use in conjunction with the current technique is
recommended. Various second order effects, such as the
actual nature of the ignition Process, the shock structure
of the diffuser, and variation of working fluid Properties
due to combustion, should be included in this new model.
Computational cost for the higher order of accuracy model
may be at least twice that of the current model. Thus,
initial analysis of any configuration should be performed
by the numerical model presented in this work.
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APPENDIX A.

LISTING OF FORTRAN PROGRAM EMPLOYED FOR CURRENT RESEARCH

The following Pages contain the listing of the
computer program (GSTART) used for the actual numerical
research. 1Included are both the main pProgram and all
subroutines. A sample input file is included at the end of
the appendix. The Program is written in PDP-11 FORTRAN-77
V5.0. The program was run on ‘a Digital Equipment
Corporation Profesional 380 microcomputer operating under
the RSX-11M-PLUS V2.1 operating systenm. Several system
dependant subroutines are called from various modules of
the program especially the graphics routines. In this
version of GSTART, al]l speciaiyinitial conditions required
for the two test problems of Chapter IV are included.
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PROGKAM GSMAIN

INCLUDE “GSCELDAT. INC’

COMMON /RHN/PSXO,PSCI,PSC2,PSCB,PSC4,PSU2,PSU
LOGICAL SHIU

CHAKACYEK DlRECTkQO,PREFIX*ZO,EXIEN*ZO
CHARACTERA24 FILNM1,FILNM2

CHARACTERA30 STARTM,FINITH

GET INITIAL TIME

STARTM=" ‘
FINITM=" !
CALL TIME(STARTH)
RUNT [M=SECNDIS(0.0)

INITIALI1ZE INPUT AND OUTPUT FILES

OFEN INPUT FILE
OPEN(UNII=5,SIQIUS=’OLD',NAHE=’EZGSIARIJGSDAI.DAT’)
READ IN FILE NAME SPECIFICATION FOR OUTPUT
READ(S,A)LD,L?,LB,IPILNH
READ(5,4100)DIRECT
READ(5,4100)PREF IX
READ(5,4100)EXTEN

4100 FORMAT(A20)

[ BN e [ o)

Lor o I o

[}

READ(5,%x)SCREEN
INITIALIZE GRAPHICS AND GRAPHIC OUTPUT FILES

CALL FILINI(DIRECT,LD,PREFIX,LP,EXTEN,LE,IFILNH,IERRCD)
CALL PLTINI(SCREEN)

INITIALIZE OUTPUT FILE

CALL PlLNEX(FILNHl,LEN,IERR)
FILNM1(21:23)="put"
OPEN(UNII=6,STATUS=’NEU’,NAHE=FILNH1)

CALL INPUT AND INITIALIZE VALUES SURROUTINE

CALL IANDI(UI,PI,IEHPI,NSK,NIO,ISEI,NSEI,PREPIX,QDOTUO,
1 SHTU)

INIYIALIZE COUNTERS AND POINTERS
JI=0




(e}

(g

[}
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USE ISENIROFIC EXPANSION FOR INITIAL CONDITIONS AND OUTPUT
CALL ISNINI(U1,P1,TEMP])
CALL PRINTI(T,JI,PREFIX)

SEY SETTLING TIME
IF (ISET.LT.0.0) THEN

CALL TYME
TSET=NSETADT

ENDIF
IBRNEDU=NF+NF+NB
XCZONE=XG(NF+NP+2-NPR)
XBRNFPT=XCZONE
IBKNPT=NF+NP+1-NPB
SET TIMING VARIABLE
TOIF1=SECNDS(0.0)

AkAkk

300 BLOCK

MAIN LOOP

AAAAR

300 CONTINUE

IF (1.GE.TSET) THEN

IF ((XBRNPI.GE.XG(IBRNPI+1)).AND.(IBRNPI.LB.IBRNED)) THEN
IBRNPT=IBRKNPT+1
QUOT (IBRNFT)=QDOTYO

ENDIF

ELSE
XBRNFI=XCZONE

ENDIF o et

CALL TYME

JI=J11+1

CALL FLUXPR

CALL FLUXCO

XBRNPI=XBRNPI+RHOUG(IBRNPI,H)/RG(IBRNPI,H)*DI

T=T+DT

IF(JI.EQ. (NSKAKCC)) THEN
CALL PRINTI(T,JI,PREFIX)

TDIF2=SECNDS(0.0)

TOIF3=TDIF2-TDIF]

TDIF3=TDIF3/FLOAT(NSK)

TDIF1=TDIF2

WRITE(6,4%) ‘ AVERAGE TINE FOR ONE ITERATION: *,TDIF3

CALL FILNEX(FILNMI,IFL1, IERR)

CALL FILNEX(FILNM2,IFLZ, IERR)

WRITE(6,4) * GRAPHIC OUTPUT IN FILES:-

WRITE(6,4) ' PRESSURE AND AREA IN FILE:",

FILNKI(1:IFL1)
WRITE(6,4) ' VELOCITY AND SOUNDSPEED IN FILE:",
FILNN2(1:IFL2)

CALL PLOIII(I,JI,PREFIX,FILNHI,IFLI,FILNH2,IFLZ,SHTU)
KCC=KCC+1

ENDIF

IF((JI.LI.NIO).AND.(((RHOUG(2,N)/RG(2,N)).GT.
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1 (.BkRHDUG(l,N)/RG(I,N))).UR.(SHIU))) GOIO 300
C IF MAX TIME STEPS EXCEEDED THEN QuIT

CALL TIME(FINITM)

RUNT 1M=SECNDS (RUNT IM)

WRITE (G, 4)
WRITE(6,4) - k*kk%*k**kkkkkk**kkkkkkkkk*k*kkkkkkkkkkkkk*kkkkkk’

WRITE(6,%) * RUN-TIME STATISTICS:
WRITE(6,4)

WRITE(6,%) ‘ STAKTING  TIME: ‘ySTARTM(1:29)

WRITE(6,%) ‘ COMPLETION TINE: " FINITH(1:29)

WKITE(6, %)

WRITE(6,4) * RUN TIME (SECS): *,RUNTIN

WRITE(6,4)

WRITE(G,4) *kkkk**kkk*k*kkkkk**k*i*ikkkk*kk%*k*kkkkkkkk*k*k*’
CLOSE(5)

CLOSE(6)

CALL EXIT

END

SUBKOUTINE EOS(NT,A1,A2,R)
C IDEAL GAS EQUATION OF STATE

COMMON /GASINFO/ROFGAS, GAHNA

RG=ROFGAS

IF ((NI.EQ.1) .OR. (NT.EQ.2)) THEN
R=A1/RG/A2

ELSE IF (NT.EQ.3) THEN
R=A1/(GAMMA-1) /a2

ILSE IF (NT.EQ.4) THEN
R=SQORT(GAMMAAAL/A2)

ELSE IF (NT.EQ.5) THEN
R=(GAMMA~1.)AA1AA2

ELSE
REASON=25.,0
CALL DIE (REASON)
ENDIF
RETURN
END

SUBROUTINE DIE(REASON)
C EXIT ROUTINE

*kk%*kk**k*k*k*k*k*k*k**kkk*kk*k*k**k**kkk*k’
k*k*****kk*kkk*k**kikkkk*kkk**k*kk*kkkk**k*k’

WRITE(6,4)
WRITE(G,4)

WRITE(6,4) k*&k*kkkk*kkkkikk*kkkk*kk**k*kkk***k**kk*kkﬁ’
WRITE(G,4) * ***k*k*k*kkk*k*k*k*kkk*kkkkkkk*kkk*kk*kk*kkk'
WRITE(6,4) *kk**kk*k*kkkkikk*kkkkkk*kkkkkkkk***kkk*k*kk’
WRITE(6,4) k*kk*k*kk*kkkk*kk**k*k**kk*kkk*kkkk*kk**k***'
WKITE(6,%) * FATAL ERKOR EXITING FOR REASON”

WRITE(6,4) ¢ REASON="' REASON
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WRITE(6,%) - kkkkk*kk**k*ﬁ(*k*k*k**kkk*k*k*kkkkkk*kkkk*kk'
WRITE(6,4) - kkk*kkk%*kkkkk*k;UcHzkkkk*kkkk**kkkkk*kkk*kk*’
CLOSE(S)

CLOSE(6)

CALL EXIT

END

SUEKOUY INE IANDI(UI,PI,IEHPI,NSK,NTD,TSEI,NSEI,PREFIX,QDOIUD,

1 SHTU)
CINPUT AND INITIALIZATION SURROUTINE

INCLUDE “GSCELDAT. INC

LOGICAL SHTU

CHARACTERA20 FREFIX
C Akkk
C SET MAX CELL NUMBER = HAX ARRARY ‘DIMENSION - 3
C Akk#

KKMAX=148
C AxAx%x 100 BLOCK
C INFUT VALUES
C AkAkh
C
C REAL IN UFSIKEAM CONDITIONS

READ(S,%)U1,P1, TENP]
C REAU IN GAS CONSTANTS

READ(S5, %) RUSC, ZMW, GANNA
CREAD IN MESH SIZE, SETTLING TIHES AND CFL

READ(S,*)NF,NP,NPB,NB,NI,NIO,NSK,NSET

READ(5,%)XN,XT,CFL ,TSET
C READ IN 'MAGIC HEAT ADDITIONS g-DoT

REAL(S, %) QRATE
C READ IN AREA PROFILE

DO 110 I=NF+2,NF+NP+2

READ(S,%)A(I)

110 CONTINUE
C AkAk% 200 ELOCK
C INITALIZE VARIABLES ACCORDING Tg INPUT
C AkAks
C ECHO INPUT TO OUTPUT FILE

WRITE(G, %) NAME OF INPUT DAT Ig:

WRITE(6,4)‘ / PREFIX

WRITE(6,4)’ U1,P1,TENP1, IF Ul < 0.0 --» SHUCK TUBE PROB-

WRITE(G,4)’ *,U1,P1,TEMP]

WRITE(6,4)’ RUGC,ZMW, GAMMA -

WRITE(6,4)‘ ', RUGC,ZMW, GANMA

WRITE(6,4) " NE, NP, NPB,NB,NT,NTO,NSK, NSET -

WRITE(6,4) " ‘yNF,NP,NPB,NB,NT,NTO,NSK, NSET

WKITE(G,4)‘ XN,XT,CFL,TSET~

WRITE(6,%)’ *,XN,XT,CFL,TSET




57

WRITE(6,4)‘ QRAIE’
WKITE(6,%)’ /,QRATE
WRITE(6,4%)’ AREA PROFILE’
D0 200 I=NF+2,NF+NP+2

c WKITE(7 %) *,A(])

WRITE(6,%)’ / A(I)

200  CONTINUE

c

C SEY LOGICAL IF SHOCK TUBE TEST

C

IF (Ul%P1.LE.0.0) THEN
SHTIU=.TRUE.

ELSE
SHTU=.FALSE.

ENDIF

C SET GAS CUNSTANTS
C

ROFGAS=RUGC/2 MW

D0 210 I=1,75

GAMMAL (1) =GAMMA

0 CONTINUE
TOTAL NUMBER OF FINITE VOLUMES

KK=2+NF+NP+NB+NT

IF (KK.GT.KKMAX) THEN

WRITE(6,%) * AkkkkAx MAX CELL NUMEER EXCEEDED AhxAkAx -

WRITE(6,4) * KKMAX= *,KKHAX

WRITE(6,4) <

CALL DIE(9999,99)

ENDIF

c
C
€21
C

AKEA MUST BE THE SAME KEFORE AND AFTERK AREA CONTRACTION (A/C)
IF (A(NF+2) .NE.A(NF+NP+2)) THEN
REASON=1.0
CALL DIE(REASON)
ENDIF
INITIALIZE DUCT BEFORE AND AFTER A/C
AO=A(NF+2)
II=1
ITI=NF+1
DO 230 I=1,2
D0 220 I=11,II]
ACI)=A0
DADX(1)=0.0
220 CONT INUE
AO=A (NF+NF+2)
II=NF+NP+2
II1I=KK
230 CONTINUE

f‘)ﬁl")ﬁﬁﬁﬁﬁﬁ

C s




A(KK+1)=A0

C STEP SIZE SET BY LENGTH OF A/
DX=(XT-XN}/NP

C DA/UX FOK MOMENTUM SOUKCE TER

[0 240 I=NF+2 NF+NP+1
DADXCI)=(A(I+1)-8(1))/

240  CONTINUE
C CKEATE BOUNLARY AND CENTER o

NF2=NF+2

XG(1)=XN+DXA(1-NF2)

DO 250 I=2,KK+]
XG(1)=XN+DXk(I-NF2)
XPG(I-1)=.5A(XG(I)+X(
VCI-1)=(A(I)+A(I-1))/2

250  CONTINUE

C SET *MAGIC* HEAT ADLITION
CALL EOS(1,P1,TEMP1,RHO])
TOTVOL=NBAV(NF2+NP)
IF (NPE.GT.0) THEN
[0 255 I=1+NF+NP-(NPB-1)
TOTVOL=TOTVOL+V( )
CONTINUE
ENDIF
QDOTVO=QKATEARHOLAUIAA (1)
D0 260 I=1,KK
QDOT(13=0.0
260  CONTINUE
KETUKN
END

(8]
w
wn

SUBKUUTINE ISNINI(UI,P1,T
C INITITIAL CONDITIONS CALCULAT
INCLUDE ‘GSCELDAT. INC~
C DECLARE ‘MACH’ VAKIAELES
REAL MSQ,MNSQ,MIN,MU,HL M
C DEFINE ISENTROPIC FUNCTIONS
FUNC(X2)=1.0+(GAK-13/2.04
PR(X2)=FUNC(X2) k% (-GAM/ (G
RHOR(X2)=FUNC(X2) AA(-1.0/
ARZ(X2)=1/X2%(2/(GAK+1) AF
C CHECK FOR RIEMANN PROELEM {Sh
IF (U1.LT.0.0) THEN
CALL STSU(UI,PI,TENP])
RETURN
ENUIF
C SET INITIAL VALUES BEFORE A/C
GAM=GAMMA
CALL EOS(1,P1,TEMP1,RHO1)
CALL EOS(3,F1,RHO1,EI1)

58

C AND NUMBER OF YOLUNES USED THERE
M
DX

ORDINATES (X-WISE) FOR EACH VOLUME

I-1))
-0 & DX

s L+NF+NP

/TI0TVOL

EMP1)
I0NS

G2

X2

AM-1))

(GAM~1))
UNC(XE))*&((GAH+1.0)/(GQK~1.0})
ock Tube Set Up (STSU)>

S ————
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CALL EGS(4,P1,RHOI,C])
E1=RHO1A(EIL+U1AU1/2. )
RHOUI=RHO1AU1
DO 100 I=1,NF+]
RG(1,N)=RHO1
UG(I,N)=U]
TG(1,N)=1EMP]
EG(I,N)=E]
c EIG(I,N)=EI]
PG(I)=p]
C6(I)=C]
RHOUG (1,N)=RHOU]
100 CONTINUE
C SET ‘T0TAL‘ QUANTITIES
MIN=U1/C1
MS{=MINAMIN
PO1=P1/PR(KSQ)
RHOO1=RHO1/RHOR (KsSQ)
ASTAR2=A(1)%A(1)/AR2(KSQ)
HG2=HSQ
EPS=]1,0E-5
[0 200 I=2+NF,2+NF+NP
AAVE=(A(D)+A(I+1))/2.
AV2=AAVEARAVE
ARN2=AU2/ASTAR2
DELTAM=MG2-1.0
S00  CONTINUE
AROZ=AK2 (MG2)
IF((ABS(ARNE—ARBZ).GI.QkEPS).AND.(ABS(DELIAH).GI.Z*EPS))THEN
IF ((MG2-1.0).GT.EFS) THEN
C NEWTON‘S METOHWD
ARZMF=AK2 (MGZ+EPS)
AR2KM=AR2(MG2-EPS)
ARZF=(ARZMP-AK2MM) / (24EPS)
DELTAM=(ARN2-AR02) /AR2P
MG2=MG2+DELTAMN

[ I ]

ELSE
C BOLZANO’S HETHOED
ML=1.0
MU=10.0
DELTAM=MU-NL
510 CONTINUE

MG2=(MU+ML) /2.0
ARO2=AR2(MG2)
IF ((ABS(ARNZ-ARDQ).GT.EPS).AND.(DELIAH.GI.EPS)) THEN
IF (ARO2.GT.ARN2) THEN
HU=MG2
ELSE
ML=MG2
ENDIF
DELTAM=MU-ML
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60T0 510
ENDIF
ENDIF
GOTO 500
ENDIF
PG(I)=FR(MG2)4P0]
RG(I,N)=RHOR(MG2) xRHOO]
C CALL EOS (2,PG(1),RG(1,N),T6(1,N))
CALL EOS (3,PG(I),RG(I,N),E[TENp)
CALL EOS (4,PG(1),RG(I,N),CG())
UTEMP=SQRT (MG62) ACG( 1)
RHOUG (I,N)=RG (I, N) AUTEMP
EG(I,N)=RG(I,N)*(EIIEHP+UIEHP**2/2.)
200 CONTINUE
ISUM=Z+NF+NP
D0 300 I=1SUM+1 ,ISUM+NB+NT
RG(I,N)=RG(1,N)
UG(1,N)=y]
IG(I,N)=TG(1,N)
EG(I,N)=EG(1,N)
c EIG(I,N)=EIG(1,N)
PG(I)=PG(])
CG(I)=CR(1)
RHOUG(T,N)=RHOUG (1, N)
300  CONTINUE
RETURN
END

[ M o]

SUEKOUT INE SISU(PDP,PRESS3,I)
INCLUDE ‘GSCELDAT. INC’
C COMMON FUR ‘EXACT’ SOLUTION
COHHON/RHN/XO,CI,CZ,C3,C4,U2,H
IF (PRESS3.G6T.0.0) THEN
C  THEN RIEMANN PROBLEM
C  SULVE FOR P2/p] ITERATIVELY
C BOLZANO’S METHOD
EPS=1E-5
GAM=GAMMA
PRL=1E-5
FRU=44.1
DPR=PKU-PRL
510 CONTINUE
PRG=(PRU+FKL) /2.0
POPG=1/PRG*(1-(GAH-1.0)/(2*&AH)*(PRG-I.0)/
1 SQRI(1+(GAH+1.0)/(2*GAH)A(PRG*1.0)))
2 Ak (2XGAM/ (GAM-1) )

IF ((ABS(POPG+POP).GT.EPS).AND.(HPR.GT.EPS)) THEN

IF (POPG.GT.ABS(POP)) THEN
PRL=PRG

ELSE
PRU=FRG
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ENDIF
DPR=FKU-PRL
GOTO 510
ENDIF
P1=-FOPAPRESS3
P3=PRESS3
CALL E0S(1,P1,T,RHO1)
CALL E0S(3,P1,RHO1,EI1)
CALL E0S(4,P1,RHO1,C1)
E1=KHO1AEI]
P2=P1xFRG
CALL EOS(1,P3,T,KH03)
CALL EOS(3,P3,RH03,EI3)
CALL EOS(4,P3,RH03,C3)
E3=KHO3AEI3
UZ=C3*2.0/(GAH—1.0)*(1.0-(?2/P3)kk((GAH~1)/(2.0*GAH)))
W=C1ASORT((PRG-1.0) 4 (GAM+1.0)/(2XGAN)+].0)
C4=C3- (GAN-1)/2.04U2 :
RHOR21=((GAH+1.0)*P2+(GAH—1.0)kPI)/((GAH+1.0)*?1+(GAH—1)*P2)
RHO2=RHOR21 ARHO1
CALL EO0S(4,P2,RH02,C2)
MIDPT=KK/2
X0=(XPG(MIDFT)+XPG(MIDPT+1)) /2.0
D0 100 I=1,MIDPT
RG(I,N)=RHO3
UG(I,N)=0.0
C 1G(I,N)=T
EG(I,N)=E3
C EIG(I,N)=EI3
PG(1)=P3
CG(I)=C3
RHOUG(I,N)=0.0
100 CONT INUE
I0 200 I=MIDPT+1,KK
RG(I,N)=RHOI
UG(I,N)=0.0
TG(I,N)=T
EG(I,N)=E]
C EIG(I,N)=E]]
PG(1)=p]
Co(I)=Cl
RHOUG(1,N)=0.0
200 CONT INUE
ELSE
C AKEA CHANGE PROBLEM
uzci=-pop
P1=-PKESS3
KHO1=T
CALL EOS(3,PI,RHO1,EI1)
CALL EOS(4,P1,RHO1,CI)
E1=RHO1AEI]

[}

[ W e




7100

7200

1
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U1=0.0
ZMACH=0.0
DUM=U2C14C1
CALL SHGCK(PI,RHGI,Ci,Ul,ZﬁACH,DUH,PZ,Rﬁﬁz,CE,UE,ZHE,US
, GANMA )
CALL E0S(3,F2,RH02,EI2)
E2=RHO24(EI2+U24U2/2. )
RUZ=RHOZAU2
IBOUNU=1+IFIX(.75ANF)
D0 7100 I=1,IBOUNI
RG(I,N)=KHO2
EG(I,N)=E2

PG(1)=Pp2
CG(I)=C2
RHOUG (I,N)=RU2
CONTINUE
DO 7200 I=1+IBOUND,KK
KG(I,N)=RHO1
EG(I,N)=E]
FG(I)=F]
CG(I)=C]
RHOUG(I,N)=0.0
CONT INUE
ENDIF
RETURN
END

SUBKOUT INE SHBCK(PIX,RIX,CIX,UlX,ZﬁIX,DUCX,PBX,RQX,CBX,
U2X,ZM2X,US2X, 6)

C NUKMAL SHOCK RELATIONS

C CAL

Z1=(G+1.)/2.
22=G/(G+1.)

23=(G+1.)/(G-1.)
B=Z1XABS(DUCX)/C1X
P2X=P1Xk(l.+22AB£(B+(B£B+4.)#i.S))
REX=P2X/F1X
R2X=R1XA(Z34RPX+1.)/(RPX+Z3)
C2X=CIXA(REXARIX/R2X) A%.5
U2X=U1x+pucy

IM2X=U2X/C2X

WX=KZXADUCX/ (R2X-R1X)
US2X=U1X+Wx

KETURN

END

SUBROUTINE TYME
CULATE TIME STEF
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INCLUDE “GSCELDAT. INC”
DT=BX/<ABS<RHGUS(I,HB/RG(I,N))+CG<1>>
B0 350 I=2,KK
CJ=BX/(ABS(RHUU8(I,N}/RG(I,N))+CG(I})
IF(CJ.LT.DT) THEN
Dr=CJ

ENLIF

350 CONTINUE
DT=CFLADT
RETUERN
END

SUBROUTINE FLUXPER

C PRELDICTOR STEP

INCLUDE “GSCELDAT. INC’
COMMON /FLXV&R/FHCISE),PKCISI),DP(ISE),FN{ISI),PN(ISI),DN(ISI)
BI=RHDUG(I,R)/EG(I,N}
D0 200 I=1,KK-1
FI=GAMMA-1.
E=R1
BI=RHUU8(I+1,N)/RG(I+I,N}

C POSITIVE EIGENVALUES
F1=(B+AES(B))/2
92={B+CG(I)+ABS(B+CG(I}))/2
P3=(B~CG(I)+ABS(B~CG(I}))/2

C NEGATIVE EIGENVALUES
AFP1l=(B-ABS(R))/2
§P2=(B+CG(I)-A88(B+CG(I)))/E
APS=(B~CG(I)-§BS(8~CG(I)))/Z
[=p+CB(I)

E=B-CG(]I)
GI=RG(I,N)/(2AGAMMA) AACI+])

C POSITIVE FLUXES ACKROSS THE I+1ST INTERFACE
FW(1)=(2AF9AP1+P2+P3)AG]
PH(I)=(2*?9&?1%B*?2£B+P3*E)k81
UI=(3~GAHHR)£(P2+P3)*CS(I)*CG(I)/(Ei??)
OPfI}=(F9*FlkBk#Z+P2§B%B/2+P3kEiEK2+N1)*Gl
F91=GAMMA-1,

D2=RB1+4CE(I+1)
E2=B1-CG(I+1)
B2=RG(I+1,N)/(2AGAHMA) AR(I+1)

C NEGATIVE FLUXES ACROSS THE I+1ST INTERFACE
FN(I)=(2iF91kAP}+§PB%AP3)kGB
PN(I)=(2*?91*&?1*81+éP2kD2+AP3k£2)*GB
H2=(S-Béﬁﬁh)k(éP2+hPB}§CG(I+1)k§2X(2£F91)
GN(I)=(F91kh?lABl§A2+AP2kDZ#DB/Q+AP3*EE&EB/2+H2)kGQ

200 CONTINUE
C CREATE FLUXES FOR KK+1ST INTERFACE (DNSTREAM EC.)
IF (ABS(E1).LE.ABS(CG(KK))) THEN




ELS

C POSITIV

C POSITIV

C SUPERSO

END
C CREAIYE
I=1
RG(
KHO
EG¢(
oo

1

201 CON
no

202 CON
RET
END

SUB
C CURKECT
INC
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KLOGP =KK-1

CALL OSBC(N,M1)

E

KLOOF=KK

I=KK

FI=GAMMA-1.

B=RH8UG(I,N)/RG(I,N}

E EIGENVALUES

Pl=(E+AES(R))/2
P2=(B+CG(I}+ABS(B+CB(I)))/2
P3=(B-CG(I)+ABS(B-CG(I)))fZ
D=B+CG(I)

E=B-CG(I)

GI=RG(I,N)/(2AGAMMA) AA(I+]1)

E FLUXES ACROSS THE I+18T INTERFACE
FU(I)=(2*F9*PI+P2*?3)*BI
PH(I)=(2kP9iP1kB*P2kH+P3*E)iGi
HI=(3*GAHHQ?#(P2+P3)%CG(I)kCG(I)/(QkF?)
OP(I)=(F9#PlABkk3+P2kﬂiB/2+P3iE£Ef2+&1)*GI
NIC FLOW... EG. NO NEGATIVE FLUXES
FN(I)=0.0

FN(I)=0.0

ON(I)=0.0

IF

"PREDICTED’ VALUES

I,K1)=KG(I,N)

UB(I,M1)=RHOUG(I,N)

1,M1)=EG(I,N)

201 I=2,KLOOP

ST=DT/VY(1) WHAT IS THE DIFFERENCE?77797

ST=DT/(OXAA(I))

RG(I,HI}zRG(I,N>~SIk(FHfI)—Fw<I~l)+PH€I}~?N<I-I))

RHOUG(I,M1}=RHDUG(I,N)-ST*(PM(I}-PH(I~I)+PN(I)-PN(I—I})+
DI/ACI)APG(I)ADADX ( I)

EG(I,ﬁl)=£8(I,N)~ST%(0P(I)-BP(I~1)+0N(I)-GN(I-I))+QBOT£I)*DT

TINUE

202 I=1,KK

UTEMF=KHOUG(I,H1)/RG(I,H]1)

BIIEHP=(EG(I,ﬁl)-RHDUG(I,nl)ﬁﬁTEHP/2)/RG(1,HI)

CALL EOS(5,RG(I,M1),EITEHF,PG(]))

CALL E0S(4,FG(I),RG(I,M1),06(]))

TINUE

URN

KOUTINE FLUXCD
Ok STEF
LUDE ‘GSCELDAT. INC"




Lye)

QOO o

o]
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COMMON /FLXUAR/FH(ISI),PH(ISI),OP(ISI),FN(ISI),PN(lSI),ON(lﬁl)
B=RHOUG(1,H1)/RG(1,HI)
DO 203 I=1,KK-1
FI9=GAMMA-1.
UI=B
B=RHOUG(I+1,HI)/RG(I+1,H1)

POSITIVE EIGENVALUES
P1=(B+ABS(R))/2
P2=(B+CG(I+1)+ABS(B+CG(I+l)))/2
P3=(B-CG(I+1)+ABS(B-CG(I+1)))/2

NEGATIVE EIGENVALUES
AP1=(B-ABS(R))/2
AP2=(B+CG(I+I)-ABS(B+CG(I+1)))/2
AP3=(B-CG(I+1)~ABS(B—CG(I+1)))/2
D=UT+CG(D)

E=UI-CG(I)
G1=RG(I,M1)/(2AGAMMA) AA(I+1)

POSITIVE FLUXES ACROSS THE I+1ST INTERFACE
FU(I)=(2AF94P1+P2+P3) AG]
PH(I)=(2*F9*P1*UI+P2*D+P3AE)*GI
U1=(3—GAHHA)k(P2+P3)*CG(I)*CG(I)/(Z*F9)
UP(I)=(F9kPlkUI**2+P2£Dkﬂ/2+P3kE*E/2+U1)*Gl
F91=GAMMA-1.

D2=B+CG(I+1)
E2=B-CG(I+1)
G2=RG(1+1,H1)/(24GAMMA) KA(I+]1)

NEGATIVE FLUXES ACROSS THE I+1ST INTERFACE
PN(I)=(2*F91kAP1+AP2+AP3)kGB
PN(I)=(2*F91*API*B+AP2*D2+AP3*EQ)*GQ
U2=(3~GAHHA)k(AP2+AP3)*CG(I+1)*£2/(2k?91)
GN(I)=(F9IkAP1kBk*2+APZ*D2*D2/2+AP3*EZ*52/2+U2)*GZ

203 CONTINUE
FOSITIVE FLUXES ACROSS THE KK+1ST INTERFACE (DNSTREAM B.C.)
IF (ABS(B).LE.ABS(CG(KK))) THEN
KLOOP=KK~1
CALL DSBC(M1,M)
AVERAGE RESULTS OF PREDICTOR AND CORRECTOR STEP (AS USUAL)
ALTERNATE METHOD (USES CORRECIOR VALUE ONLY)
RG(K(,ﬂ)=.5k(RG(KK,H1)+RG(KK,H))
RHOUG(KK,H)=.SA(RHOUG(KK,H1)+RHDUG(KK,H))
EG(KK,H)=.Ji(EG(KK,Hl)+EG(KK,H))
ELSE
KLOOP=KK
I=KK
UI=RHOUG(I,H1)/RG(I,M1)
F9=GAMMA-1.
D=U1+CG( 1)
E=UI-CG(I)
G1=RG(I,M1)/(24GAMMA) AA(I+1)

POSITIVE FLUXES ACKOSS THE KK+15T INTERFACE

FW(1)=(2AF9xP1+P2+P3) AG1
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FM(I)=(2XFIAP1AUT+P2A0+P3IAE ) AG]
W1=(3-GAMHA) X (P24P3)ACG (1) ACG( 1)/ (24F)
OF (1) =(FIXPLAUTAK2+P2ADAL/2+P3AEAE, 2+W1) AG]
C SUPERSONIC FLOW... EG. NO NEGATIVE FLUXES
FN(I)=0.0
EN(1)=0.0
ON(1)=0.0
ENDIF
C GENEKATE ‘CORRECTED’ VALUES
I=1
RGCI,M)=RG(I,N)
RHOUG (I,M)=RHOUG(I,N)
EG(1,M)=EG(1,N)
00 207 I=2,KLOOF
ST=DT/(DXAA(I+1))
RG(I,H)=.S§(RG(I,N)+R8<I,ﬁl)-ST*(Pw(I)~FH(I-1)+FN(I)—
IFN(I-1)))
RHGUG(I,H)=.5%(RHUUG(I,N}+RHGUB(I,ﬁl)-SIk(PH(I)~PH(I—1}
L+EN(D-PN(I-1)) + DI/ACI*1)AEG(I)ADADX (D) )
EG(I,H)=.§i(EG(I,HI)+EG(§,N)-ST*(OP(I)~GP(I-I)+UN(I)-
10N(I-1)) +QDOT(I)ADT)
207 CONTINUE
C GENERATE UPLATED OTHER VARIABLES OF INTEREST
[0 208 I=1,KK
UTEMP=KHOUG (I, H) /RG( I, H)
EITEHP=€ES(I,ﬁ)—RHOBG%I,M)*UTE&P/B)/RG(I,H)
CALL EOS(S,RG(I,N),EITEMF,FG(]))
CALL EOS(4,FG(I),RG(I,H),CH(I))
208 CONTINUE
RETURN
END

SUBKOUTINE PRINT1(TTI1,JJ,PREFIX)
C PRINTED OUTPUT FOR GSTART
INCLUVE ‘BSCELDAT. INC
CHARACTER#20 FREFIX
L=N
WRITE (6,901)
901  FORMAT(1H1}
WRITE (6, 4)
WRITE(6,4)
WRITE(G, %)’ DATA NAME: ,PREFIX,’ OUTPUT AT TIME= *,TT1,
1 ' AND TIME STEF /,]J
WRITE(G,4)’ DX= * DX, " DT= /,DT
136 FORMAT(1X,/)
135 FOKMAT(1X,E16.9,21X,E16.9)

130 PGRﬁAI(?X,’X‘,I3X,’A',ISX,‘P’,IBX,’R’,IBX,‘U’,ISX,’C’,IBX,’H',

113X,7E”,13%,'T")
WRITE(6,130)
GMASS3=0
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RMASS3=0,

EMASS3=0,

DO 134 I=1,KK

J=1

UTEﬁP:RHQUQ(J,L)/R@{5§L3

CaLL EUS{E,?G(J),RB(J,L),?TEH??
AM=UTEMF/CG(])

WRITE(6,132) XPGCJ),A(J),PG(J),RG(J,L),UIEHP,CG(J),AH

1,EG(J,L),ITEMP
GHASSS=GH§SSE%RG5£§é%é%izk
RHASSB=R%§533%££QQ§{J§i?i%(J}
EﬁASSS=EHé883+EBCJ,L}QU(J)
134 CONTINUE
WRITE(6,%)’ CONSERVATION TOTALS”
&RITE(G,&)&K%SSB,RHASSB,EHASSS
WRKITE(6,136)
132 Egkﬁézilxiﬁézﬁs.é§232)

C "THRUST* CALCULATION
THRUST=0.0
DO 500 I=NF+2,NF+NFP+]
THRUST=IH&HST+DABX(I)kPB(I)iDX

500  CONTINUE
WRITE(6,%)’ 1st ORDER EST, OF THRUST...
WRITE(G,%)' THRUST (in consistant units)
WRITE(E, %)
WELTE(G, 41’ GAMMA=" y GAMMA
RETUKN
END

SUM OF DADXADXAP: -
=, THRUST

SUBKOUTINE PLGTIT(II,JJ,PREFIX,FILNMI,IFLI,PILNHB,IFLS,SHTU)

C GRAPHIC OUTPUT FORK GSTART
INCLUDE ‘GSCELDAT. INC
COMMON/RMN/X0,C1,C2,C3,C4,U2, U
LOGICAL SHTU
REAL UA(150),CA(150),UG(150)

CHARACTERA24 FILNMI,FILNH2

CHARACTERA56 TITLE
CHARACTERA6 PREFIX
CHARACTERAS56 XKEY
XKEY(1:14)='DISTANCE (cm)
LX=14
ENCOLE(S4,4299, TITLE) TT, 1]

4299 FOKMAY(1SHOUTPUT AT TIME=,510.4,8H(sec)
WRITE(6,%)’ ', TITLE(1:54)

DO 100 I=1,KK
UG(I)=KHOUG(I,N)/RG(I,N)

100 CONTINUE
IF (SHIU) G0TO 8888
CALL FLTGO(FILNMI,IFL])

+15H AND TIME STEF ,Ig)

o ——————



8888

9000

2100

9200

9300

9400

9450
9475

1

1

68

CALL PLTCLR
CALL PLIDAI(Z,KK,XPG,XKEY,LX,A,’ DUCT AREA (sq. cal)’,22,FG,
"STATIC PRESSURE (dynes/sq. cH),30,0)
CALL PLTTL(TITLE,S54)
CALL PLISTP(FILNM1,IFL])
CALL PLIGO(FILNMZ, IFL2)
CALL FLTCLR
CALL PLIDAI(Q,KK,XPG,XKEY,LX,UG,’ FLUID VELOCITY (cw/sec)’,25,
CG,” SOUND SPEED (cw/sec)’,23,3)
CALL FLITL(TIILE,54)
CALL PLISTP(FILNMZ, IFL2)
RETURN
CONTINUE
WEITE(6,%)’ AY PLOTIY: T1,337,11,13
SHOCK TUBE OUTPUT
XC=X0-ClATT
IC=IFIX((XC—XG(I))/ﬁX+l.O)
D0 9000 1I=1,IC
CA(1)=(C3
UA(I)=0.0
CONTINUE
XC=X0+(U2-C4)ATIT
ICE=IFIX((XC—XG(1))/DX+1.0)
GAM=GAMMA
DO 9100 1=1C+1,ICE-]
ETA=(XPG(I)~X0)/TT
CA(1)=2/(GAH+1.0)*C3-(GAH—1.0)/(6AH+1.0)*ETA
URCI)=CA(I)+ETA
CONTINUE
XC=X0+U2kTT
ICC=1FIX((XC-XG(1))/DX+1.0)
Do 9200 I=1CE,ICC-1
UACI)=y2
CA(I)=C4
CONT INUE
UA(lIceCr=u2
CACICC)=C4
XC=X0+WATT
ISH=IF1X((XC—X6(1))/BX+1.0)
Do 9300 I=ICC+1,ISH
UA(L)=U2
CA(I)=C2
CONTINUE
D0 9400 I=ISH+1,KK
UA(Iy=0,0
CAa(I)=C1
CONTINUE
WRITE(6,9450)
PORH&T(IHI,GX,’UA’,IZX,'UERR’,IOX,'CA',IZX,’CERR')
PDRHAI(IX,4(612.4,2X))
D0 9500 I=1,KK
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UNUH=SQRT(&§(I)Ai2+UG(I)kﬁ2)
IF (UNUM.NE.0.0) THEN
UERRz(&A(I)~QG(1>}/URﬂﬁ
ELSE
UERK=0.0
ENDIF
CNUH=SQRT(CA(I)£k2+CG{I)&k2>
IF (CNUM.NE.0.0) THEN
CERR=(CA(I)-CG(I)}/C&UH
ELSE
CERR=0.0
ENDIF
WRITE(6,9475) Uﬁ(I),QERk,Cé(l),CERE
9500 CONTINUE
CALL PLIGU(FILNM1, IFL])
CALL PLTICLE
CAaLL PLTDAT(z,KH,XPG,XKEY,LX,UA,’ANAL?YIC VEL. RESULT (cm/sec)’
»29,UG, “CFD VELOCITY RESULT (cm/sec)’,28,3)
CaLL FLITL(TITLE,S54)
CALL PLIST?(PILNHI,IFLI}
CALL PLIGO(FILNM2, IFL2)
CALL PLTCLR
CaLL PLIBAI(Z,KK,XPG,XKEY,LX,CA,'SGUNB SFEED: ANALYTIC (cw/sec)’
1 +30,C6, "SOUND SPEED: CFD (en/sec)',ZS,B)
CALL FLTTL(TITLE,S54)
CALL PLTST?(FILNMZ,IFLB}
RETURN
ENID

Pt

SUEKOUT INE FILINI(EIR,LEP,PREFIX,LPP,PKLTYP,LTP,NSIART,IERR)
C THIS SUBROUTINE AND THE NEXT FORM A AUTOMATIC

C SEQUENTIALLY NUMEERED FILES)
COMMON /FILNQ&K?ILNAH,/FILNUH/NFILES
CHARACTERA20 PREFIX,NiSTR,BIR,FILTYP
CHARACTERA24 FILNAN

C CHECK INCOMING LATA

C

LD=LDP
LT=LTF
LF=LFF
IF ((LP,GT.ZQ).GH.(LP.LE.O).GR.€LT.GT.20).OR.(LT.LE.Q).OR.
1 (LB.EI.ZG).BR.(LD.LE‘O)} THEN
IERE=~100
ELSE
NLSTEk=" !
IF (PRE?IX(I:LP).EQ.&LSTR(I:LP)) THEN
IERR=100
ELSE
C INFUT IS SAFE TO WORK ON....
C SET INITIAL FILE NUMBER

B —



C

20
30
C

110

120
130
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NFILES=NSTART
INPUT CONDITIONING FOR PREFIX
IFP=0
ILP=LP
KEPEAT
CONT INUE
IFP=IFP+]
IF (CPKEFIX(IFPZIFP).EQ.’ “).AND.(IFP.LT.1LP)) GOTO 10
UNTIL IFP POINTS TO A NON-SPACE CHARACTER
SET ILP IO MAX ALLOWED LENGTH .... IF GREATER
IF ((ILP-IFF).GI.S) ILF=IFFP+5
DO 20 I=IFP,ILF
IF (FKEFIX(I:I).EQ.’ ‘) THEN

ILF=1I-1

GOTOU 30
ENDIF
CONTINUE
CONT INUE

PACK FILIYP
IF (FILTYP(1:LY).EQ.NLSTR(1:LT)) THEN
IFFT=1
ILFYI=1
ELSE
IFFI=0
ILPT=LT
KEPEAT
CONT INUE
IFPT=IFPT+1
IF ((FILTYP(IFPI:IFPI).EQ.’ /)
1 LANDLCIFPT.LT.ILPI)) GOIO 110
UNTIL IFFI PUINTS TU NON SPACE CHARACTER
IF (CILPI-IFPT).GT.2) ILPT=IFPT+2
DO 120 I=IFFI,ILPT
IF (FILTYP(I:I).EQ.’ ‘) THEN
ILPI=1-1
GOTO 130
ENDIF
CONTINUE
CONY INUE
ENBIF
PACK DIK
IF (D1KRC1:LD).EQ.NLSTR(1:LD)) THEN
IFPD=-1
ILPU=-1
ELSE
IFPL=0
ILPD=LD
REPEAT
CONTINUE
IFPD=TFPD+]
IF ((UIRCIFFDIIFPDD LEQ.’ )
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1 «AND. (IFPD.LT.ILPD)) GOTO 210
C UNTIL IFPT POINIS TU NON SPACE CHARACTER
IF (CILPD~IFPD).GT.8) ILPD=IFFLD+8
bO 220 1=IFPD, ILPD
IF (DIRCI:ID.EQ.” ) THEN

ILPD=1-]
GOTO 230
ENDIF
220 CONTINUE
230 CONY INUE
ENDIF
L CONSTRUCT FILE NAME
FILNAK(1:23)= ‘

IPOINT=6-ILP+IFP+]]

IF (IFPD.NE.-1) THEN
IPOINT=IPOINT-(3+ILPD-IFPB)
FILNAM(IPOINT: IFOINT )=/~
IPOINT=IPOINT+] ‘
IEND=IPOINT+ILPD-IFPD
FILNAH(IPDINI:IEND)=DIR(IFPD:ILPD)
IPOINT=IEND+1
IEND=1END+1
FILNAM(IPOINT: IEND)="]"
IPOINT=IEND+]

ENDIF

IEND=TFOUINT+ILP-IFP

FILNAh(IPUINI:IEND)=PREFIX(IFP:ILP)

IPOINT=IEND+3

IEND=IPOINT

FILNAM(IPOINY:IEND )=/, ’

IPOINT=IEND+1

IEND=TPOINT+ILPT-IFPT

FILNAH(IPOINT:IEND)=FILIYP(IFPT:ILPI)

IERR=000

ENDIF
ENDIF
RETURN
END

SUBKUUT INE FILNEX(NAHE,LENGIH,IERR)
C GENERATES NEXT SEQUENTIAL FILE NAME
CHARACTERA2 FILNUN
CHARACTERX24 FILNAM,NAMNE
COMMON /FILNAM/FILNAH,/FILNUH/NPILES
IF (NFILES.GE.10) THEN
IF (NFILES.GT.99) THEN
IERE=100
RETURN
ELSE
RSS1GN 4199 TU IFORM
ENDIF



4099
4199
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ELSE
IF (NFILES.LT.0) NFILES=0
ASSIGN 4099 TO IFORN
ENDIF
ENCODE(Z, 1IFORM, FILNUM) NFILES
FORMAT (707, 11)

FOKMAT(12)
NAME(1:23)=FILNAM(1:23)
NAME(18:19)=FILNUM(1:2)
NFILES=NFILES+]

LENGTH=23
IERE=000
RETURN
END

SUBRUUTINE FLTINI(SCREEN)

C THE FOLLOWING SUBROUTINES FORM A SET AUTOFLOTTER ROUTINES
C FOR THE PRO 300 SERIES WITH CGL OR OTHER CORE GRAPHICS
C COMPATIBLE COMPUTERS

CALL CGL(90)

IF (SCKEEN.LT.0.0) THEN
CALL CGL(106,°TI:,3)
CALL CGL(104,°TI:7,3)

ENDIF

RETUKN

END

SUEROUTINE PLTTEM
CALL CBL(91)
RETUKN

END

SUBROUT INE PLTGU(NAME, LENGTH)
CHARACTERA1S NAME

CALL CGL(103,NAME,LENGTH)
CALL CGL(105,NAME,LENGTH)
RETURN

END

SUBROUT INE PLTSTP(NAME,LENGTH)
CHARACTERAIS NAME

CALL CGL(106,NAME,LENGTH)

CALL CGL(104,NAME,LENGTH)
RETURN

END

SUBROUTINE PLTCLR
CALL CGL(92)
RETURN

END

T
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SUBROUT INE PLIDQI€R€UEVE,NPOINT,X,XKEY,LX,?I,KEYI,LI,
1 Y2,KEY2,L2,NSCLON)
PLDAT ... (ASSUMES YOU WAVE CALLED PLGO ETC.)

FUNCTIONS. IT PROVILES SIMFLE INDIRECT ACCESS TQ CGL,

DESCRIPTION OF THE FUNCTION OF NSCLON.

ﬁ(’lﬂﬁ(’)ﬁﬁﬁf‘)m

CHARACTERA3S KEY1,KEY2
REAL X(MPOINT},¥I(&POINT),YE(&PDINT)
CHARACTERA10 YIU&L(S),YBV&L(S),XUAL(G)
INTEGEER LENYI(S),LENYQ(S),LENX(G)
C INITIALIZE LINE TYPE (JUST IN CASE)
IONE=1
CALL CGL(12,IONE)
C FIND EXTREMUM FOR SCALING
BIGNUM=1E38
XMAX=X(1)
XMIN=X(1)
Y1MAX=~EIGNUM
Y2MAX=-RIGNUM
YIMIN=0,0
Y2ZMIN=0,0
DO 100 I=1,NFOINT
IF(X(I).GT.XMAX) THEN
XMAX=X(I)
ELSE IF (X(I).LT.XMIN) THEN
XMIN=X(I)
ENDIF
IF(YI(I).GT.YIMAX) THEN
YIMAX=Y1(I)
ENDIF
100  CONTINUE
IF (NCUKVE.GI.1) THEN
C NSCLON  DENOTES THE SCALING DEPENDANCE BETWEEN THE TWO DATA
C SEIS. THE VALUES ARE BEFINED AS FOLLOWS

C NSCLON = 0 INDEPENDENT SCALING

C * = 1 SCALE ON MAXIMUM OF Y1

C ' = 2 SCALE ON MAXIMUM OF Y2

c ' = 3 SCALE ON THE GREATEST OF THE TWD MAXIMA
£

IF (NSCLON.EQ.1) THEN
YZMAX=Y1MAX
ELSE
D0 200 I=1,NPOINT
IFCY2(1).GT.Y2HAX) THEN

FLOAT IS A CONVENIENCE AUTOPLOTTER FOR UPPER-HALF-PLANE ONLY

A MAXIMUM OF TWO CURVES MAY BE PLOTTED ON SIMULTANEQUSLY AS
OF THIS REVISION. THE SECOND CURVE DATA HOWEVER NEED NOT BE
FASSED IF ONLY ONE CURVE IS PLOTTED. SEE BODY OF FROGRAM FOR

FEATURES... LEAVES TOP LINE BLANK FOK USE AS TITLE (SEE PLTTL)
GENERATES AXES, GRID LINES AND REFERENCE VALUES

R ———
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Y2MAX=Y2(])
ENDIF
200 CONTINUE
IF (NSCLON.EQ.2) THEN
Y1MAX=Y2ZMAX
ELSE IF (NSCLON.EQ.3) THEN
IF (Y1MAX.GE.Y2MAX) THEN
Y2MAX=Y1HAX
ELSE
YIMAX=YZMAX
ENDIF
ENDIF
ENDIF
ENDIF
C GENERATE VALUES FOR SCALING TRANSFORMATIONS

XM=1.0/ (XMAX~-XMIN)
XE=~-XMINAXM
IF (YIMAX.LE.0.0) THEN
WRITE(6,%) ‘ ERRUK IN PLTDAY ALL Y1<0.0°
RETURN
ELSE
YIM=1/Y1MAX
Y1E=0.0
ENDIF
IF (NCURVE.GI.1) THEN
IF (Y2MAX.LE.0.0) THEN
WRITE(6,%) * ERROK IN PLTDAT ALL Y270.0
RETURN
ELSE
Y2M=1/Y2MAX
Y2E=0.0
ENDIF
ENDIF

L]

GENEKRATE BOUNDARY AND KEY VALUES
USING FORTRAN ENCODE STATEMENT
LABEL FORMAT IS5 :
100 FORMAT(G10.3)

I 3 1 0O

DO 400 I=1,5
XSC=(XMAX-XMIN)&. 24 T+XHIN
Y1SC=Y1MAXA.241
ENCODE (10,4100,XVAL(I+1)) XSC
CALL PLTOOI (XVAL(I+1),LENX(I+1))
ENCODE (10,4100,YIVAL(I)) YISC
CALL FLTOOL(YIVAL(I),LENY1(I))

400  CONTINUE

ENCODE(10,4100,XVAL(1)) XHIN

CALL FLTOO1(XVAL(1),LENX(1))

IF (NCURVE.GT.1) THEN

TSR
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C
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Lo 450 1=1,5
Y2SL=Y2MAXAO,24]
ENCOLUE (10,4100,Y2VAL(I)) Y2SC
CALL FLTO01(Y2VAL(I),LENY2(I))
CONTINUE
ENDIF

C SEY UP GKID FOK PLOT

c

C BAICH MODE GRAPHICS

00

4]

nhnononnnn

600

CALL CGL(96)
CALL csL(92)
IF (NCURVE.EQ.1) THEN

! STAKT BATCH MODE
! CLEAR SCREEN

CALL CGL(BO,-O.ZZ,I.O,*O.13334,].06667) ! SET WINDOW
ELSE

CALL CGL(BO,-0.22,1.22,-0.13334,1.06667) ! SET WINLOW
ENDIF

CALL CGL(86,0)
CALL C4L(1,0.0,0.0)
CALL CBL(10,1.0,1.0)
ISIX=6
CALL CGL(12,ISIX,,1)
DO 500 I=1,4
YCUR=.241
CALL C6L(1,0.0,YCUR)
CALL CGL(4,1.0,YCUR)
CALL CGL(1,YCUR,0.0)
CALL C6L(4,YCUR,1.0)
CONT INUE
CALL CGL(12, IONE,,1)

DRAW Y AX1S (X AXIS IS BOTTOM OF PLOT)

IF (XB.GE.0.0) THEN
CALL C6L(1,XB,0.0)
CALL C6L(4,XB,1.0)

ENDIF

GENEKATE GK1U LABELS

CALL CGL(26,2,1)
I0 600 I=1,4

XS5C=(I-1)4.2

CALL C6L(1,XSC,-0.01)

CALL C6L(16,XVAL(I),LENX(I))
CONTINUE
CALL CGL(1,0.77,-0.01)
CALL CGL(16,XVAL(S),LENX(S))
CALL CGL(26,3,1)
CALL CGL(1,1.0,-0.01)
CALL CGL(16,XVAL(&),LENX(6))

! SET ORIGIN
! MOVE 10 ORIGIN
! URAW PLOY BORDER

! DOTTED LINES FORM
! THE BACKGROUND GRID

! RESET TO SOL1D LINES

'XB CORKESPONDS TOU X=0
'Y-AXIS

'CHAKJUST, CENTEK-TOP

J

! MOVE T0 GKID PUSTIONS
! PRINT LABELS

'ADJUST 4th LABEL

'GRID LABEL AT .8 FULL SCALE
'CHARJUST, RIGHT-TOF

!PRINT FULL SCALE

!GRID LAEEL
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CALL CGL(17,10,STRLEN,STRHT)
XWINTH=STRLEN/10.0
XOFSET=STKLEN+.24XWIDTH
CALL CGL(26,3,2)
bo 700 1=1,5

YSC=140.2

CALL CGL(1,-XWIDIH,YSC)
CALL CGL(IG,YIUAL(I),LENYI(I))
CALL CGL(I?,LENYI(I),SIRLEN,STRHT)
XOFSET=STRLEN+.24XWIDTH
CALL CGL(2,-X0FSET,0.025)
CALL CGL(S5,-.2,0.0)

CONT INUE

CALL CGL(1,-0.01,0.0075)

CALL CGL(16,70.000",5)

C  GENERATE LEGEND

[ B o)

Lo I o B |

C
c

710
C

C  KEPEAY LABEL KEY AND PLOT ER

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

CGL(22,2,1)
C6L(26,1,1)
C6L(1,-0.219,0.1)
CGL(16,KEY1,L1)
C6L(22,0,1)
CGL(26,1,3)
CGL(1,-0.09,-0,12)
CGL(16,KEY1,L1)
CGL(2,-.01,0.037)
CGL(5,~.1,0.0)

LABEL X-AXIS

CALL CGL(1,.%,-.12)
CALL CGL(26,2,3)
CALL CGL(16,XKEY,LX)

PLOT DATA SET 1

I=1
XSC=XHAX(I)+XB
YSC=YIMAY1(I)

1F (YSC.LT.0.0) THEN
Y5€=0.0

ENLIF

CALL CGL(1,XSC,YSC)

DO 710 I=2,NFOINT
XSC=XMAX(I)+XB
YSC=YIMAYI(ID)

IF (YSC.LT.0.0) THEN
CALL CGL(1,XSC,0.0)
CALL CGL(4,XxSC,YSC)
CUNTINUE

IF (NCURVE.GT.1) THEN
IDTWU=4

'DETERIME VERT. LAREL SIZE

'CHARJUST, RIGHT-CENTER

'MOVE YU GKID POSITIONS
'"PRINT LAREL
!DETERIME VERT. LAREL SIZE

!DRAW LINE TYFE

'LABEL X AXIS

ISET CHAKPATH TU 2
!CHARJUST LEFT-TOF

'"PKINT LEGENL FOR DATA SET 1
'CHAKJUST LEFT-BUTTON
"PRINT LEGENU FOK DATA SET 1

'UKAW LINE TYPE

!8CALE DATA

'MOVE 10 FIRST POINT

'SCALE DATA

'DKAW NEXT DATA PUINT

OCESS FOR SECOND DATA SET (IF EXTANT)
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CALL C5L(12,IDTWO,,1)
CALL CGL(26,1,2)
XLOC=1.0+XWI1DTH
D0 800 I=1,5
YSC=14.2
'MOVE 10 GR1D POINT
CALL CGL(1,XLOC,YSC)
CALL CGL(16,Y2VAL(I),LENY2(I))

'LINE TYFE 4
'CHARJUST LEFT-CENTER

CALL CGL(17,LBNY2(I),SIRLEN,SIRHT)!DETERIHE VERT. LABEL SIZE

XUFSET=STRLEN+.2AXWIDTH
CALL CGL(2,-X0FSET,-0.025)

CALL CGL(S5,-.2,0.0)
CONTINUE
LABEL ZEROQ
CALL CGL(1,1.01,0.0075)
CALL CGL(16,70.000",5)
GENERATE LEGEND
CALL CGL(22,2,1)
CALL CGL(26,1,1)
XLAB2=1.19
CALL CGL(1,XLAB2,0.1)
CALL CGL(16,KEYZ,L2)
CALL CGL(22,0,1)
CALL C6L(26,1,3)
CALL CBL(1,0.50,-0.12)
CALL CGL(16,KEY2,L2)
CALL CGL(2,-.01,0.037)
CALL CGL(S,-.1,0.0)

FLOT DATIA SET 2

I=1
XSC=XMAX(I)+XB
YSC=Y2MAY2(I)

IF (YSC.LT.0.0) YS§C=0.0

CALL €GL(1,XSC,YSC)

[0 810 I=1,NPOINT
XSC=XMAX(I)+XB
YSC=Y2MAY2(1)

IF (YSC.L1.0.0) Y$C=0.0
CALL CGL(4,XSC,YSC)
CONTINUE

CALL C6L(12, IONE,,1)

ENDIF

CALL CGL(97)

RETURN

END

SUBROUT INE PLITL(TITLE,LENGTH)
CHARACITERA66 TITLE
CALL CGL(26,2,1)

'UkAW LINE TYPE

'LABEL X AXIS
'SET CHAKFATH 2
'CHARJUST LEFT-TOF

'PRINT LEGENL FOK DATA SET 2
I'SET CHARFATH 0

'CHARJUSYT LEFT BOTTOM

'"PRINT LEGEND FOR DATA SET 2

'URAW LINE TYPE

'SCALE DATA

'MOVE TO 1st DAtA POINT
!SCALE DATA

'DRAW TO NEXT DATA POINT
'RESET LINE TYPE TU DEFAULT

'END BAICH
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CALL CGL(1,.5,1.06)

CALL CGL(16,TITLE,LENGTH)
RETURN

END

SUBROUT INE PLTOO1 (STK,LEN)
C STRIPS LEADING AND TRAILING BLANKS FROM ENCODED STRINGS
CHAKACTER STR*10

LEN=10
I1=0
10 I=I+1
IF (STR(IZIV.EQ.” ) G010 10
J=LEN+1
20 J=J-1
IF (STRCI:1).EQ.Y *) GOTO 20
LEN=J-1+1
IF (1.NE.1) THEN
o 30 k=1,3
KK=K-1+]
STR(KK:KK)=5TR(K:K)
30 CONTINUE
ENDIF
RETURN

END
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COMMON BLOCK INCLUDED BY PROGRAM LINE
" INCLUDE ‘GSCELDAT.INC’ "

COMMON /CELLDAT/RG(ISO,Z),EG(ISO,Z),
1 PG(lSO),CG(ISO),RHOUG(ISO,Z),

2 QDOT(lSO),XG(lSl),A(lSl),DADX(ISO),XPG(ISO),V(ISO)
COMMON /STEPSIZ/DNETA,KK,

COMMON /GASINFO/ROFG

r

H,Ml,DT,N,DX,NF,NP,NPB,NB,NT,CFL
AMMA
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EXAMPLE INPUT FILE: FOR GSTART

9,5,3,0
USERFILES
EXMPL
GID
-1.0
101287.0,1.295E8,300.0
8.3144E7,22.9,1.35
2,21,0,20,20,3000,500,0
0.0,25.0,0.9,0.0
3.2302E10
10.00

9.50

9.025

8.574

8.145

7.738

7.351

6.983

6.634

.302
.987
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