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Abstract
The full development of the equations for defocused digital particle image velocimetry as
proposed by Kajitani and Dabiri (2005 Meas. Sci. Technol. 16 790–804) predefined a finite
area at the focal plane to be imaged onto the CCDs. This resulted in bounded overlapping
viewing cones of the lenses, i.e. the observable domain, within which a tetrahedral imaging
volume was defined. The resulting ray tracing suggested that the observable domain would not
be fully imaged onto the CCDs. Furthermore, the tetrahedral imaging volume, which was also
a definition used to develop the characteristic three-dimensional DDPIV equations, only
represented a limited portion of the observable domain. It is shown that by avoiding these
incorrect definitions, a more accurate description of the three-dimensional DDPIV
measurement system can be developed by introducing a new measurement volume based on
the CCD dimensions, which replaces the tetrahedral volume, as well as introducing a new
system optical axis. Lastly, a geometric uncertainty analysis is conducted and compared to the
results found by Kajitani and Dabiri.

Keywords: defocusing digital particle image velocimetry, DDPIV, cross-correlation analysis,
velocimetry, imaging, visualization, fluid flow, fluid diagnostics

(Some figures in this article are in colour only in the electronic version)

Nomenclature

γ radial distance from the optical axis to the lens axes
ζ distance from an equilateral triangle’s centroid to any

one of its vertices
apf triangle side-length of the front face of the volume of

interest in the present derivation
apb triangle side-length of the rear face of the volume of

interest in the present derivation
apfx rectangle width of the front face of the volume of

interest in the present derivation
apfy rectangle height of the front face of the volume of

interest in the present derivation
apbx rectangle width of the rear face of the volume of interest

in the present derivation
apby rectangle height of the rear face of the volume of interest

in the present derivation

az thickness of the volume of interest in the present
derivation

b particle image separation
d equilateral triangle side-length distance between the

lenses
dcw distance from the lens plane to the test section wall
f focal length of the lenses
H the height at the focal plane within the observable

domain at the reference distance, Lft

h1 CCD width
h2 CCD height
Lapft location of the front face of the domain of interest

relative to the lens plane
Lp distance from the lenses to the CCD sensors along the

optical axis
Lft distance from the lens to the focal plane along the

optical axis

0957-0233/08/065402+13$30.00 1 © 2008 IOP Publishing Ltd Printed in the UK

http://dx.doi.org/10.1088/0957-0233/19/6/065402
http://stacks.iop.org/ MST/19/065402


Meas. Sci. Technol. 19 (2008) 065402 R L Grothe and D Dabiri

M optical magnification
X X-coordinate of a particle in the global coordinate

system
x0 x-coordinate of an equilateral triangle’s centroid

mapped by the triple CCDs’ exposure of a particle in
the local CCD coordinate system

xb x-coordinate of the bottom vertex of the image in the
local CCD coordinate system

xccd x-coordinate of the center of the CCD measured from
the system optical axis

xtl x-coordinate of the top-left vertex of the image in the
local CCD coordinate system

xtr x-coordinate of the top-right vertex of the image in the
local CCD coordinate system

Y Y-coordinate of a particle in the global coordinate
system

y0 y-coordinate of an equilateral triangle’s centroid
mapped by the triple CCDs’ exposure of a particle in
the local CCD coordinate system

yb y-coordinate of the base vertex of the image in the local
coordinate system

yccd y-coordinate of the center of the CCD measured from
the system optical axis

ytl y-coordinate of the top-left vertex of the image in the
local CCD coordinate system

ytr y-coordinate of the top-right vertex of the image in the
local CCD coordinate system

Z Z-coordinate of a particle in the global coordinate
system

Zmin location of the intersection of the emerging rays from
the lenses on the optical axis

1. Introduction

PIV techniques have become more prevalent as a means
to interrogate and study fluid flows. Many of the three-
dimensional flows, however, cannot be fully understood by
interrogating them with two-dimensional PIV techniques, so
having the ability to capture three-component velocities within
a three-dimensional volume is necessary. Towards this end,
3D digital particle tracking velocimetry (3DDPTV) (Maas
et al 1993, Murai et al 1980, Virant and Dracos 1997) has
been developed, in which individual particles are tracked in
time in a Lagrangian sense using multiple cameras arranged
to have differing perspectives of the same volume in space.
Holographic particle image velocimetry (HPIV) (Barnheart
et al 1994, Zimin et al 1993, Meng and Hussain 1995, Zhang
et al 1997) has also been developed, which is capable of
providing high resolution spatial data at one instant in time by
recording the flow onto a hologram. Though these methods
are useful in their own right, there are also certain drawbacks
of each. 3DDPTV, for example, requires time-consuming
calibration for each camera. Also, low particle densities
result in low spatial resolution, and high densities result in
triangulation failures, due to improper particle differentiation,
which result in incorrect particle tracking. HPIV, on the
other hand, is extremely accurate, using 2D slices from
the holographic image to reconstruct 3D velocity vectors.

However, its setup is very sensitive to slight environmental
disturbances, it is time consuming to implement and it can
only provide a velocity field at a single point in time.

Another three-dimensional volumetric velocity
measurement technique, defocusing digital particle image
velocimetry (DDPIV), was introduced by Willert and Gharib
(1992). The mathematical equations behind this method
were mainly established by Pereira et al (2000) and further
elaborated on by Pereira and Gharib (2002) (henceforth
PG). Whereas these equations were appropriate only for a
two-dimensional optical arrangement, Kajitani and Dabiri
(2005) (henceforth KD, see also Kajitani and Dabiri (2008))
developed the mathematical equations appropriate for a fully
three-dimensional optical arrangement, where a finite viewing
area at the focal plane was predefined. However, these latter
equations were derived considering a tetrahedral imaging
volume defined by inscribing an equilateral triangle into
the overlapping viewing cones, i.e. the observable domain,
for each lens. In these derivations, the viewing cones were
assumed to be bound by the geometric imaging of a finite
area at the focal plane onto the CCDs. This resulted in
an observable domain that was not fully imaged onto the
CCDs. The purpose of this paper is to therefore remove this
predefinition, and show that a more correct imaging volume
definition is the one that matches the shape of the CCDs,
thereby avoiding the use of the tetrahedral volume defined
by KD. Towards this end, section 2 will review the imaging
volume definition in KD and discuss its limitations; section 3
will introduce the new imaging volume definition and a
new optical axis for the system; section 4 will present the
geometric uncertainty analysis; and section 5 will present the
conclusions.

2. Previous imaging volume definition

In Pereira et al and PG, a cubic imaging volume was inscribed
inside the true observable domain. For the purpose of analysis,
KD later defined a tetrahedral imaging volume that represented
the domain observable to all lenses, shown in figure 1. In
this figure, the cones of vision image the finite circular area
common to all lenses at the focal plane, towards the left of
the figure onto the CCDs on the right side of the figure. The
inset plane cut view in figure 1 shows the inscribed equilateral
triangle cross-section from the tetrahedral imaging volume
within the observable overlapped region.

Since the area at the focal plane was predefined in KD,
the bounding viewing cones imaging this area onto the CCDs
resulted in the ray tracing shown in figures 2 and 3, identifying
KD’s definition for the imaging volume with the dimensions
labeled. For clarity, figure 4 shows a three-dimensional view
of this imaging volume proposed by KD. Figure 5 shows the
limits of the projection of this tetrahedral imaging volume
onto three CCDs (the left showing rectangular CCDs and the
right showing square CCDs), placed such that the equilateral
triangle from the volume just fills the width of the CCDs. First,
to fully image the triangular region, a virtual CCD must be
used, which will be slightly rectangular, shown by the solid line
in figure 5. Second, given this arrangement proposed by KD,
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Figure 1. Cones of vision formed by lenses placed at the vertices of an equilateral triangle with the overlapped region shown in blue and the
inscribed white imaging volume shape. Note the discrepancy between coordinate systems for the lenses and the CCDs (adapted from KD).

Figure 2. Tetrahedral imaging volume defined in the X–Z plane with virtual CCDs. Regions of unused CCD are indicated by the red circles.
The volume of interest is shown by the dark blue region, while the observable domain is identified by the combined light and dark blue
region.

figures 2, 3 and 5 show that the centroid of the CCDs should
be coincident with the centroid of the equilateral triangle.
The effect of this can be seen in the upper right portion of
figure 2 for the top-left and right CCDs in the enclosed
circles; the entire virtual CCD is not being utilized to define
the volume. This is easier to see in figure 5(a), where the
equilateral triangle does not completely fill the CCDs’ area.
Should the CCD be square, figure 5(b) also shows that the
entire CCD is still not being utilized by the defined volume. For
rectangular CCDs, KD projected the triple exposure (triplet)
of the imaged particle at Zmin onto the CCD such that its

horizontal side length filled the horizontal dimension of the
CCD as shown in figure 5(a).

To understand the effects of such limitations on the
imaging volume, the CCD images shown in figure 5 are
back-projected into the imaging volume, and are presented in
figure 6, where a planar cut of the imaging volume at Lapft is
shown on the left, while the right image shows a planar cut
at az + Lapft (see also figure 3). Note that the image becomes
inverted from the triangular arrangement of the lenses shown in
figure 5, since the imaging volume is on the opposite side of the
lenses. The dashed lines refer to what is imaged by an actual
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Figure 3. Tetrahedral imaging volume defined in the Y–Z plane with virtual CCDs. The volume of interest is shown by the dark blue region,
while the observable domain is identified by the combined light and dark blue region.

Figure 4. Three-dimensional view of the tetrahedral imaging
volume.

rectangular CCD, while the solid rectangles with inscribed
equilateral triangles match the definition for the virtual CCD
given in figure 5. By definition, on the focal plane, these three
would perfectly overlap. The choices for the cut locations are
made to illustrate the extremes of the imaging volume: even
though the side length of the equilateral triangle making up
the front face of the imaging volume is still relatively large,
the definition of the imaging volume limits the amount of the

overlapped triangles actually visible by all three CCDs (shown
within the blue box) as shown by the small portion of the solid
white region within the blue box on the left image. Closer to
the focal plane, shown in figure 6 right, this becomes less of an
issue as the area of the overlapped triangles increases within
the overlapping CCDs (also shown by the blue box). These
limitations are a consequence of predefining a finite area at
the focal length to be imaged onto the CCDs, which shall be
addressed below, in section 3.

3. New imaging volume definition

In reality, predefining a finite area at the focal plane does not
bound the cones of vision of the lenses nor what is imaged
onto the CCDs. Rather, since the cones of vision create a
much wider imaging cone, the CCDs determine the area that
is imaged at the focal plane. Consequently, it will be possible
to define a more useful imaging volume based entirely upon
the CCD dimensions, which will therefore better describe
what is observed when using a DDPIV system. Furthermore,
due to the inclusion of the CCDs in the DDPIV description,
the optical coordinate system and the CCDs’ image coordinate
system should be consistent. Figure 1, however, shows the
conflict between these sets of axes; as a result, a redefinition
of the optical system coordinates is made from x to −y and
y to x. Maintaining the same optical arrangement as set
forth by KD (lenses arranged in an equilateral triangle), and
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Figure 5. Definition of imaging volume projected onto upper left, upper right and bottom CCDs for (a) rectangular CCDs and (b) square
CCDs.

Figure 6. Relative size of the volume of interest (indicated by the solid white) using the equilateral triangle definition shown in figure 5, at
Z = Lapft (left) and Z = az + Lapft (right).

using rectangular CCDs, the resulting new geometric setup
and distance definitions are shown in figures 11 and 12. Note
that in comparison to figure 5, this ray tracing correctly allows
for the full exposure of the CCDs. Furthermore, by placing the
system optical axis (z-axis) at the half-height and half-width of
the lens’ triangular shape (see figures 2, 3 and 10), an imaging
volume can be obtained that is rectangular and symmetric, as
shown in figure 7. It should be pointed out that a rectangular
volume can also be defined with the system optical axis located
at the centroid of the lenses, as in KD. However, this would
result in an imaging volume that would be asymmetric about
the optical axis (see figure 8), with its coordinate system
located at 1/3 and 1/2 of the imaging volume’s respective
dimensions in the y- and x-planes.

The fully exposed CCD images, when back-projected into
the imaging volume, are presented in figure 9, where a planar
cut of the imaging volume at Lapft is shown on the left, while
the right image shows a planar cut at az + Lapft (see also
figure 8). The limits of this new volumetric region are defined
by the upper outside right and left corners of the top-left and
top-right CCDs, respectively, and the bottom edge of the lower
CCD identified by its midpoint, marked in figure 9 as red,
green and blue circles, respectively, which correspond to the
limits of view of the CCDs. Note again that the imaged area
becomes inverted from that of the lens arrangement because
of the crossing at the lens plane. In addition, figures 7 and 9
also illustrate the improvements of this method over that
of the tetrahedral volume, since the new imaging volume
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Table 1. Comparison between sensor particle location equations in KD and present derivation.

KD Present derivation Equation

xtl
M

2Z
[−d(Lf t − Z) − 2Lf tX] M

2Z
[−d(Lf t − Z) − 2Lf tX] (1)

xtr
M

2Z
[d(Lf t − Z) − 2Lf tX] M

2Z
[d(Lf t − Z) − 2Lf tX] (2)

xb −MLf t X

Z
−MLf t X

Z
(3)

ytl, ytr − M

2Z

[
2Lf tY + d√

3
(Lf t − Z)

]
+ 2−√

3
2
√

3
h1 −M

Z

(
Lf tY +

√
3

4 d(Lf t − Z)
)

(4)

yb −M

Z

[
Lf tY − d√

3
(Lf t − Z)

]
+ 2−√

3
2
√

3
h1 −M

Z

(
Lf tY −

√
3

4 d(Lf t − Z)
)

(5)

Figure 7. Three-dimensional view of the rectangular imaging
volume.

definition allows for full CCD utilization in this improved
DDPIV characterization.

Given this new geometric arrangement, the modified
relations expressing the particle locations on the CCDs with
respect to KD are shown in table 1, where Lft is the distance to
the focal plane, Z is the particle’s physical depth location found
using the equations from KD, M is the optical magnification,
the small x and y indicate pixel locations of an imaged
particle on the CCD and the subscripts tl, tr and b indicate
top-left, top-right and bottom respectively, from the camera
perspective. Inverting and simplifying equations (1)–(5) result
in the relations for the location of particles in physical space,
as shown in table 2. The KD equations in this table have
been slightly modified from their original form such that
the coordinate systems and naming conventions match those
defined for the new geometric arrangement. Note again that
in this case, there is no arbitrary and artificial cross-sectional
shape imposed on the imaging volume but rather it is naturally
derived from the shape of the CCD, allowing for accurate

Table 2. Comparison between CCD particle location equations in
KD and present derivation.

KD Present derivation Equation

X −x0Z

Lf t M

−x0Z

Lf t M
(6a)

x0
xtl+xtr +xb

3
xtl+xtr +xb

3 (6b)

Y −y0Z

Lf t M

−y0Z

Lf t M
(7a)

y0
(ytl+ytr +yb)

3
[(ytl+ytr )/2]+yb

2 (7b)

Z Z = (
1

Lf t
+ b

MdLf t

)−1
Z = (

1
Lf t

+ b

MdLf t

)−1
(8)

= (
1

Lf t
+ ζ

MγLf t

)−1

Figure 8. Skewed rectangular imaging volume.

Figure 9. Relative size of the volume of interest (indicated by the
solid white) using the rectangular definition at Z = Lapft (left) and
Z = az + Lapft (right), with the circles indicating the respective
points used to define the extents of the imaging volume.
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Figure 10. Lens dimensions for a rectangular imaging volume.

full utilization of the available CCD space. Additionally,
unlike KD where the radial distance from the centroid of an
imaged equilateral triangle, ζ , was the more natural triplet size
measure, for both the rectangular and square CCD cases, it is
now more convenient to use b, the triplet side-length, as it can
be seen from figure 10 that ζ is no longer intrinsically defined
from the new system optical axis.

For the X-direction equations, the present derivation and
KD are the same because in that plane, the systems are
arranged symmetrically. The biggest changes occur in the
Y-direction equations because in the present derivation the
equations for the top two CCDs as well as the bottom CCD
are symmetric about the newly defined optical axis, where
the only difference is in the signs of the second terms of
equations (4) and (5). In KD, these equations differed from
each other because there is no symmetry about the optical x-
and y-axes. A similar change is noted in the equations for
finding the physical particle location in table 2 as for those
given in table 1. Only the equation for the Y-direction is
different in the present derivation, because the optical axis has
been shifted to give a symmetric rectangular region about the
origin. For this reason, y0 is shifted to the half-height of the
imaged triplet as opposed to the centroid as given in KD.

While the present discussions have focused on the use of
rectangular CCDs, they are also applicable to square CCDs.
An example is shown in figure 13 of planar cuts of the imaging
volume described by a square CCD, as well as its three-
dimensional view (see figure 14). Like the rectangular CCDs,
it can be seen that the imaging volume of the CCDs continues
to separate from one another in an equilateral fashion, leading
to a vertically elongated rectangular front face for the imaging
volume and a slightly off-square cross-section near the back
of the volume. Note, that at the focal plane, the imaging
volume would again be square and completely overlapped, as
by design.

Table 3. Comparison between optical setup equations in KD and
present derivation for a rectangular CCD with its shorter dimension
aligned in the y-axis.

KD Present derivation Equation

Zmin Lapft − az

( apf

apb−apf

)
Lapft − az

( apfy

apby−apfy

)
(9)

d
Lapft(apb−apf )

az
− apf

2√
3

(Lapft(apby−apfy )

az
− apfy

)
(10)

Table 4. Comparison between optical setup equations in KD and
present derivation for a rectangular CCD with its shorter dimension
aligned in the x-axis.

KD Present derivation Equation

Zmin Lapft − az

( apf

apb−apf

)
Lapft − az

( apf x

apbx−apf x

)
(11)

D
Lapft(apb−apf )

az
− apf

Lapft(apbx−apf x )

az
− apf x (12)

Modifications are also necessary to the equations for Zmin,
the minimum distance from the lens plane that can be imaged
on all three CCDs, and d, the lens separation. In KD, these
were shown to be functions of apf and apb (see figure 7),
since their imaging volume was characterized by an equilateral
triangle with the side length of the equilateral triangle as its
characteristic length. However, the new imaging volume is
a rectangle with two characteristic lengths, so the previous
imaging volume dimensions apf and apb need to be replaced
with apfx, apfy, apbx and apby. Using similar triangles (see
figures 11 and 12), the modified equations in comparison with
KD are shown in table 3, where Lapft is the distance from
the lens plane to the front of the imaging volume and az is
the depth of the imaging volume, as shown previously. The
main difference is that now, out of two sets of characteristic
lengths for the imaging volume, the one that diminishes most
quickly must be correctly chosen for use in determining Zmin

and d. The correct dimension to use is denoted by the subscript
appended to apb and apf.

With a rectangular CCD, the shorter dimension should be
aligned with the y-axis because this is the dimension in which
overlap will diminish first, thus defining Zmin. If the shorter
dimension was instead aligned with the x-axis or if the CCD
is square (see figure 13), apfy and apby in equations (9) and
(10) are replaced with apfx and apbx, respectively, and the 2√

3
pre-multiplier in equation (10) can be removed (see equations
(11) and (12) in table 4).

The remaining equations for the DDPIV system remain
unchanged from KD. It is, however, important to consider
the constraints on the CCD placement, namely defining the
outer limits of the imaging volume, as discussed above, and
centering on the system’s optical axis at the focal plane (see
figures 11 and 12). In KD, assumptions were used in restricting
the lens’ viewing cones, thereby restricting the description
of the observable domain. But to fully define the imaging
volume, the CCD locations must be determined. This can be
done using the similar triangle relations given in equations (13)
and (14) along with the standard thin-lens equation solved for
Lp in equation (15):

Lf t√
3

4 d
= Lp

y −
√

3
4 d

(13)
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Figure 11. Rectangular imaging volume defined in the X–Z plane. The volume of interest is shown by the dark blue region, while the
observable domain is identified by the combined light and dark blue region.

Figure 12. Rectangular imaging volume defined in the Y–Z plane. The volume of interest is shown by the dark blue region, while the
observable domain is identified by the combined light and dark blue region.
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Figure 13. Relative size of the volume of interest (indicated by the
solid white) using square CCDs cut at Z = Lapft (left) and
Z = az + Lapft (right), with the red circles indicating the points used
to define the imaging volume extents.

Figure 14. Three-dimensional view of the square imaging volume.

y + h2
2

Lp + Zmin
=

√
3

4 d

Zmin
(14)

Lp = f · Lf t

Lf t − f
. (15)

Combining these constraining equations for centering and
the outer viewing limits with the physical dimensions of
the CCDs results in a set of equations that fully constrain the
CCDs. Equation (16) identifies the CCD location in the
Z-direction with respect to the lens plane (Lp); equation (17)
identifies the focal plane of the system in the Z-direction
with respect to the lens plane (Lft), and equation (18) sets
the magnitude of the vertical displacement from the system’s
optical axis for the center of all three CCDs (yccd)—the bottom
is displaced in the positive y-direction and the top-left and top-
right are displaced in the negative y-direction. The magnitude
of the horizontal displacement for the center of the top-left
and top-right CCDs (xccd) is given in equation (19) (the bottom
CCD has no displacement in the x-direction). The reason there
needs only be one equation for each of the x- and y-directions

is that the new imaging volume definition places the CCDs
symmetrically about the system optical axis in both directions,
whereas in KD, there would need to be two different equations
for the y-direction displacements above and below the system
optical axis.

Lp =
(

2
3

√
3h2 − d

)
Zminf

d(f − Zmin)
(16)

Lf t = (
√

3d − 2h2)Zminf√
3df − 2h2Zmin

= f · Lp

Lp − f
(17)

yCCD =
√

3

4
d(1 + M) (18)

xCCD = d

2
(1 + M). (19)

Lastly, in KD, shift terms included to vertically fit an
equilateral triangle into a rectangular CCD (last term of
equations (4) and (5)) are no longer necessary, because the
imaging volume is defined by the actual view of the CCDs
instead of forcing a predefined imaging volume shape onto
the CCDs. As seen in figures 9 and 13, such a predefinition
results in incorrect ray tracing, which show that parts of the
CCD never overlap. For this reason, the Z distance to the
back of the imaging volume should always be set equal to
Lft so that the ray tracing correctly shows that the CCDs
completely overlapped in that plane (see figure 15). This can
easily be achieved by setting Lft in equation (15) equal to the
distance desired for the back of the imaging volume as given in
equation (20):

Lf t = Lapft + az. (20)

4. Geometric uncertainty analysis

A geometric uncertainty analysis is performed on the new
rectangular definition for the imaging volume, using the
method of Lawson and Wu (1997) as implemented by KD. In
this approach, physical system parameters, such as lens focal
length, lens separation side-length and distances to the CCDs
and focal plane, are all assumed to have zero uncertainty in
order to ascertain the uncertainty in a particle’s position given
the uncertainty of its image on the CCDs.

The equations for the X-direction remain the same as
in KD (with the appropriate coordinate transform as from
before), but the Y-direction equations are redefined from the
new optical axis origin and with the lenses spaced equally
3γ /4 above and below the axis, whereas in KD they were
γ /2 and γ above and below, respectively (see figure 10). For
comparison with KD, the entire set of uncertainty equations
is shown in table 5. Equations (21)–(23) are the uncertainties
in the physical location of the particle based on the particle
image location on the CCD, the physical particle location and
physical parameters of the imaging system.

As in KD, �x is the uncertainty in measuring the particle
image location on the CCD, where it is assumed that the
uncertainties in all particle locations on the CCD are the
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Figure 15. Rectangular imaging volume defined in the Y–Z plane. The back of the volume of interest has been shifted to the focal plane and
is shown by the dark blue region, while the observable domain is identified by the combined light and dark blue region.

Table 5. Comparison between uncertainty equations in KD and present derivation.

KD Present derivation Equation

δ(dX) (�x)√
3

|Z|
MdLf t

√
d2 + 3X2 (�x)√

3
|Z|

MdLf t

√
d2 + 3X2 (21)

δ(dY ) (�x)√
3

|Z|
MdLf t

√
d2 + 3Y 2 (�x)

4
√

3
|Z|

MdLf t

√
17d2 + 8

√
3Yd + 48Y 2 (22)

δ(dZ) (�x) Z2

MdLf t
(�x) Z2

MdLf t
(23)

same:

δ(dxtr ) = δ(dxtl) = δ(dxb) = δ(dytr )

= δ(dytl) = δ(dxb) = �x. (24)

As found throughout this paper, the X-direction equations
are the same in this derivation as in KD, but the Y-direction
equations differ. Taking a representative volume of interest
(width of 100 mm) and camera physical parameters from
Pereira and Gharib (2002) (d = 100 mm, Lft = 1000 mm,
�x = 0.025, h1 = 10.24 mm), the uncertainty in Y (from
equation (22)) is plotted and compared in figure 16. An
overall system error can be evaluated by integrating this error
over Y/d at constant Z/d values. The bounds of integration
defining this cross dimension are −1/3 < Y/d < 2/3 for KD,
and −1/2 < Y/d < 1/2 for the present derivation. Performing
this integration shows that the integrated error for the present
derivation is 0.68% less in comparison with KD.

Similar to KD, out-of-plane to in-plane uncertainty ratios
can also be derived, as they are good measures of the
overall performance of the system. Table 6 shows these
results in comparison with KD, where d is used as the

Table 6. Comparison between error ratio equations in KD and
present derivation.

KD Present derivation Equation

δ(dZ)

δ(dX)

√
3(Z/d)√

1+3(X/d)2

√
3(Z/d)√

1+3(X/d)2
(25)

δ(dZ)

δ(dY)

√
3(Z/d)√

1+3(Y/d)2

4
√

3(Z/d)√
17+8

√
3(Y/d)+48(Y/d)2

(26)

non-dimensionalizing variable. Equations (25) and (26) are
plotted in figures 17 and 18, with respect to X/d and Y/d,
respectively.

The results are very similar to KD, with the error ratios
responding linearly for changes in Z/d but having a peak that
is off from the system optical axis. The error ratio versus X/d,
figure 17, shows identical results to KD. Here, the error ratio
falls off symmetrically about the system optical axis, with a
maximum occurring on axis and minimums occurring as the
particle moves farther outward. However, when plotted against
Y/d, there is a noticeable shift in the peak of the error ratios.
The shift in the peak is exactly 1/(4

√
3), which is the non-

10
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Figure 16. Absolute uncertainty δ(dY) comparison using a representative camera and imaging volume dimensions.
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Figure 17. Error ratio δ(dZ)

δ(dX)
plotted for the physical off axis X/d locations with lines of constant Z/d, matching plot in KD

dimensionalized shift distance shown with the vertical dashed
black line in figure 18 that corresponds to the shift required
to move the system optical axis from the lens’ equilateral
triangle centroid to the half-height (see figure 10). This shows
that the error distribution is centered on the lens’ equilateral
triangle centroid instead of the imaging volume location and
that the shift of the optical axis is effectively moving the origin.
Inserting Y

d
= Y

d
− 1

4
√

3
into equation (26) confirms this as the

original equation derived in KD. Because of the shift, the error

ratios in the Y-direction are not symmetric about the system
optical axis. Consequently, the error ratio for values to the
left of −1

2(4
√

3)
will have a higher value than KD, while the error

ratio for values to the right of −1
2(4

√
3)

will be lower. However,
integrating over the cross-plane dimension (−1/3 < Y/d <

2/3 and −1/2 < Y/d < 1/2 for KD and the present derivation,
respectively) for constant Z/d values gives an averaged error
ratio that is larger for the present derivation with respect to

11
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Figure 18. Error ratio δ(dZ)

δ(dY)
plotted for the physical off axis Y/d locations with lines of constant Z/d with peak shifted from KD.

KD by approximately 0.5%. This is a consequence of the fact
that δ(dY) is less for the present derivation (see figure 16),
indicating that the Y-direction has an increased overall error in
KD in comparison to the present derivation.

5. Conclusions

Starting with the fully developed characterization of the
defocused digital particle image velocimetry as presented by
KD, this paper redefines the imaging volume from a predefined
tetrahedral volume to a truncated rectangular pyramid, which
more correctly characterizes how the CCDs are imaged. The
equations were modified such that the coordinate system would
match a conventional image coordinate system so that x is
horizontal and positive to the right and y is vertical and positive
down. Also, the equations for Zmin and d were modified to take
into account the dimensions of the CCDs as opposed to KD
where the sidelength of an equilateral triangle was used.

The equations to position the CCDs in space relative to
the lenses, which were absent in KD, are presented here to
complete the physical camera design and relate it directly
to the imaged volume. The error analysis shows similar results
to KD, with matching amplitudes and only a shift in the error
ratio for the y-direction because of the now-symmetric spacing
of the CCDs about the newly defined system optical axis, while
maintaining an equilateral triangular shape for the lenses. The
absolute error ratio integrated over a representative imaging
volume, while holding Z/d constant is reduced from KD by
approximately 0.68% by this new arrangement, whereas in the
X-direction, the error remains the same for either arrangement.

This new definition of the imaging volume will allow
a more exact and accurate characterization of the DDPIV
system, as it correctly represents the physical volume imaged

onto the CCD and its corresponding volume in space that
is used for data collection. This will also allow the camera
design process to specify a more practical and therefore
useful imaging volume as an input, resulting in the parameters
associated with its geometric configuration as outputs.
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