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Abstract
A generalized cross-correlation particle image velocimetry (PIV) method capable of providing
direct estimates of fluid velocity, vorticity and in-plane shear rates has been introduced and
described by Mayer (2000 Exp. Fluids 33 443–57). While being useful, this generalized
image deformation-based PIV (herein referred to as GIDPIV) method has not been deeply
investigated. Toward this end, this paper examines the influence of window radii, particle
diameter, seeding density, weighting functions and interpolation algorithms on the accuracy of
this GIDPIV. Synthetic images representing uniform flow and an Oseen vortex flow, along
with an experimental image set, are used to assess the performance results via investigation of
random, bias and total errors.
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1. Introduction

1.1. Background

The method of particle image velocimetry (PIV) has gained
much popularity in recent years as an approach to non-
invasively interrogate a two-dimensional cross-section of a
flow field. While having a basis in optical interference of
photographic plates (Raffel et al 1998), modern PIV (or
DPIV, digital PIV) is done almost exclusively by computer,
especially with the continuous increase in computing power.
Upon acquisition, the most frequently used method for post-
processing images uses a cross-correlation algorithm, the most
basic of which is

R(x, y) =
K∑

i=−K

L∑
j=−L

I1(i, j)I2(i + x, j + y) (1)

where K and L are the dimensions of the interrogation window,
I1 and I2 are the intensity values of each window (time 1
and time 2) and R is the resulting correlation array. Due to
the discretized nature of this method, the maximum image
shift will be found at an integer pixel location. To find the
true shift, a sub-pixel peak finding interpolation algorithm is

employed (e.g. bilinear, bicubic, bicubic spline, center of mass
or Gaussian), where the Gaussian interpolator gives the best
results (Keane and Adrian 1992).

Much work has been done toward the evolution of PIV.
Westerweel et al (1997) showed that the displacement RMS
uncertainty was ∼0.002 pixels (px) at zero displacement,
increasing linearly for pixel shifts within 0–0.5 pixels, and
remaining relatively flat for larger displacements. This has
resulted in several window-shifting methods, where given
PIV results from initially processed images, the interrogation
windows were moved to the anticipated location of the
particles. Westerweel et al (1997) showed the validity of a
discrete window shift with an order-of-magnitude decrease
in uncertainty. Wereley and Meinhart (2001) realized that
the window shifting was acting as a forward differencing
scheme (O(�t) accurate) and could be improved through the
use of a center difference scheme (O(�t2) accurate). Gui and
Wereley (2002) furthered the window-shifting technique by
interpolating the images such that they could be continuously
shifted. Within such interrogation windows, this produced
near-zero particle shifts, significantly reducing peak-locking
effects and decreasing the bias error by nearly a factor of 5.
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A common source of error to the window-shifting
algorithms comes from velocity gradients within the flow,
which reduce and stretch the overall correlation peak (Meunier
and Leweke 2003). It was first suggested by Huang et al
(1993a, 1993b) that the displacement should be approximated
not only by translation, but rotation and dilatation as well.
Local field correction (Nogueira 1999) and multi-grid methods
(Scarano and Riethmuller 2000) have been developed as
image distortion algorithms to account for these additional
displacements. Several iterative deformation methods have
been discussed by Scarano (2002). All these methods require
interpolation to find the intensity values of non-integer pixel
locations in the image deformation step, which leads to
significantly more computational time. Further investigations
into the performance of various interpolation algorithms have
been performed by Astarita and Cardone (2005) and Kim
and Sung (2006). The former tested the simplex, bilinear,
biquadratic, bicubic, iterative discrete window offset, sinc,
Fourier shift theorem and B-spline interpolators, and found
the sinc, Fourier shift theorem and B-spline interpolators to
be optimal. The latter tested the linear, quadratic, B-spline,
Lagrange, sinc and Gaussian interpolators and found that
both sinc and Lagrangian interpolators were optimal, despite
increases in computational time over quadratic or B-spline
interpolators. The B-spline interpolators tested by Kim and
Sung were of lower order than those tested by Astarita and
Cardone, which is perhaps why they were not found to be
optimal. A more recent study performed by Astarita (2008)
investigated the effect of the interpolation algorithm choice
in the dense predictor step of deformation methods, that is,
the step before deforming the image. Of the interpolators
tested (bilinear, shifted bilinear, B-spline and ideal), it was
found that a B-spline interpolator was most accurate, with the
second order being adequate. The shifted bilinear interpolation
scheme was also found to give good results but it introduced
noise at lower frequencies.

A problem noted when using a continuous window-
shifting or deformation-based algorithm is the lack of
convergence of certain interrogation windows’ displacement
upon subsequent iterations. Noguiera (1999) found that
this was due to the moving-average behavior of the cross-
correlation function, which, when the spatial frequency of the
image produced a negative response, resulted in the errors not
approaching zero despite multiple iterations. Nogueira (1999)
found that if the proper weighting function

wpp(ξ, η) = 9

(
4

∣∣∣∣ ξ

F

∣∣∣∣
2

− 4

∣∣∣∣ ξ

F

∣∣∣∣ + 1

)

×
(

4
∣∣∣ η

F

∣∣∣2
− 4

∣∣∣ η

F

∣∣∣ + 1

)
(2)

was applied to each window before cross-correlation, the
frequency response could be made to never become negative.
This improvement allows higher resolution when used in a
local field correction manner (LFC) wherein structures smaller
than the interrogation window can be correctly identified. A
further investigation into the choice of weighting windows was
done by Astarita (2007), introducing more classical weighting
windows such as Blackman, Gauss, Harris, Kaiser–Bessel,

Nuttal, etc. In addition, the use of two weighting windows
was investigated, finding that the use of a top-hat window in
the so-called weighted average step allows the stabilization
of the algorithm for most weighting windows. Nogueira’s
window was found to perform well for most applications.

1.2. Generalization of the PIV cross-correlation technique
subject to affine transformations

Alternative to iterative approaches, it has been proposed that
the image-matching process can be considered an optimization
problem using the cross-correlation as the function to
maximize (Mayer 2002). In this manner, shear, rotation,
expansion and translation are used as parameters in the
optimization and are thus directly known. By performing
a first-order Taylor expansion of the velocity field and
breaking it into its translation, rotation and linear deformation
components, the image shift can be written as

Su,v,ω,sij
=

[
u

v

]
+

[
s11 s12 − ω

s12 + ω s22

] [
x − xc

y − yc

]
(3)

where u and v are the translational velocity components, ω is
the rotation, sij is the deviatoric strain tensor and xc and yc

are the coordinates of the interrogation window center point.
Because the shifting operation in equation (3) is not a discrete
process, it is applied to the continuous coordinates x and y, not
the discrete coordinates i and j . Therefore, Mayer interpolated
the image intensity fields at (x, y) from its (i, j ) coordinates,
resulting in

I1(x, y) = Q(I1(i, j)) (4)

I2(x, y) = Q(I2(i, j)) (5)

where I1 = I1(i, j) and I2 = I2(i, j) are the two-
dimensional matrices describing the intensity fields, with Q
being an appropriate interpolation algorithm. For convenience
purposes, Mayer collectively stored the velocity components
u, v, ω and sij in a six-dimensional matrix q:

q = (u, v, ω, s11, s22, s12). (6)

Although the operation in equation (3) describes the shift that
the particles at t1 undergo to align with the particles at t2,
in implementation, Mayer constructed a virtual interrogation
area at a new time, th = t1+t2

2 , centered halfway between t1 and
t2. Therefore, the particles at t1 and t2 can be thought of as
shifts of the virtual interrogation window at th.

To implement this generalized procedure, Mayer used a
circular virtual interrogation window, with discrete data points
spaced, on average, about 1 pixel apart. This spacing gave the
total number of data points per interrogation window as

N = πR2, (7)

where R is the radius of the virtual interrogation window. The
two shifting operators in equations (4) and (5) applied to this
circular interrogation window at th result in the new particle
locations. To calculate the image intensity at the data points in
the interrogation windows at t1 and t2, Mayer used a standard
bilinear interpolation algorithm.
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Because the deformed interrogation windows at t1 and t2
have a discrete number of data points, the weighted normalized
correlation function must be written in its discrete form. This
form is given by Mayer in equation (8):

C(I1, I2)

=
∑

i {[w(ri)]2I1(xi, yi)I2(xi, yi)}√∑
i {w(ri)[I1(xi, yi)]2} ∑

i {w(ri)[I2(xi, yi)]2} , (8)

where the summation is performed over all data points. To
ensure that the function C in equation (8) is a smooth function
of q, Mayer chose to use the following weighting function:

w(r) = 1 −
(

r

R

)2

. (9)

Unlike the two-dimensional correlation matrices observed in
standard DPIV, the correlation function in equation (8) must
be optimized for all six parameters of q. To accomplish this
process, Mayer used an optimization routine given by Powell
(1982). Using this optimization approach, it was found that
both random and bias errors decrease with increasing particle
image diameters with no minimum up to the maximum tested
diameter of 6 pixels. Also, the bias error follows the same
trend of peak locking as for standard DPIV using a discrete
window shift. Lastly, Mayer also found that the bias error
is largest close to the center of the vortex where the velocity
gradients are highest.

While Mayer’s generalized method and results are very
good, the parameters tested have been limited to only
bilinear interpolation, inverse parabolic weighting function
and two particle diameters. In the present study, we extend
Mayer’s study to determine the effects of various interpolation
routines, particle diameters, seeding densities, weighting
functions, radii and noise on the bias and random errors of
this generalized method. Section 2 presents the algorithm
procedure, interpolation routines and weighting functions
used; section 3 presents the simulated flow images and their
associated parameters; section 4 presents the results and
section 5 discusses these results; and section 6 presents the
conclusions.

2. Overview of the algorithm procedure and
parameters

2.1. Algorithm procedure

The first step in the algorithm consists of identifying
information that will be used to process the images. First,
a user-defined border is applied to the images specifying the
regions not used in any calculations. This border is used
to ensure that the virtual interrogation window at th = t1+t2

2
(centered halfway between the two times t1 and t2) is never
deformed off of the image. Next, the interrogation window
center points are specified. This defines the grid points
at which data (i.e. velocity, vorticity, strain rates) will be
assigned. Once this grid has been determined, the number
and location of data points within each interrogation window
are calculated based on the specified radius of that window.
The value of a chosen weighting function is then calculated

for each data point based on either radial or x and y distance
from the center of the window.

After such information is determined, the second step is
to generate a starting estimate for the six values of the q matrix
(see equation (6)), where the entries in q are defined by the
transformation operator (see equation (3)). These estimates
are obtained by first processing the images with a window-
shifting cross-correlation and outlier detection algorithms (i.e.
Westerweel et al 1997) to obtain the u and v velocities. The
resulting u and v velocities are then used to determine the ω,
s11, s22 and s12 components of the q matrix (see e.g. Raffel
et al 1998).

The final step in the GIDPIV algorithm is to find q
that best estimates the deformations within the processed
images. This process includes deforming the interrogation
window, interpolating the image intensity, performing the
cross-correlation and finding the optimum deformation using
the optimization routine given in Powell (1982). In
order to continuously deform the interrogation window, an
interpolation algorithm must be chosen beforehand. As with
most optimization algorithms, Powell is designed to find a
function minimum; so the argument of Powell is changed to
1 − C, where C is the correlation value given in equation (8).

2.2. Interpolation algorithms

The three interpolation algorithms presently studied are
bilinear, bicubic and bicubic spline. Bilinear interpolation is
the most commonly used interpolation algorithm because of its
computational speed. Bicubic and bicubic spline interpolation
algorithms are more accurate than bilinear interpolation but
take significantly more computational time as well. The
actual code to perform the bilinear, bicubic and bicubic-spline
interpolations has been taken from Press et al (2002).

2.3. Weighting functions

It is clear from Noguiera (1999) that under certain
circumstances, a weighting function can increase the accuracy
of a given PIV algorithm. Toward this end, seven
weighting functions are studied and are described as follows:
constant, parabolic down (not normalized), parabolic down
(normalized), parabolic down (shifted up), parabolic up,
parabolic up (shifted up) and Noguiera’s weighting function.
Aside from the weighting function labeled not normalized,
they all are chosen so that the area underneath them is equal
to 1. These weighting functions are given in table 1. Other
weighting functions have been proposed in the literature, but
Noguiera’s weighting function has continually returned good
performance (Astarita 2007), and will be considered as the
most advanced for the current work.

3. Flow simulation and error description

3.1. Image generation

The generated images used to test this algorithm are 8 bit
gray-scale images with the intensity at each pixel ranging
from 0 (black) to 255 (white). The particles can be modeled
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Table 1. Summary of weighting functions and corresponding equations.

Weighting function name Weighting function equation

Constant wc(r) = 1
πR2

Parabolic down (not normalized) wpd(r) = 1 − (
r

R

)2

Parabolic down wpdn(r) = (
2

πR2

) (
1 − (

r

R

)2)
Parabolic down (shifted up) wpdsu(r) = (

2
3πR2

) (
2 − (

r

R

)2)
Parabolic up wpu(r) = (

2
πR4

)
r2

Parabolic up (shifted up) wpusu(r) = (
2

3πR2

) (
1 +

(
r

R

)2
)

Nogueira’s wpp(ξ, η) = 9
(
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Figure 1. Sample computer-generated particle with center intensity
I0 = 255 and dp = 4.0.

as Gaussian, following Raffel et al (1998). However, a
computer-generated particle must be represented with discrete
pixels, so the intensity value at each pixel location in the
particle is determined by integrating over the area of the pixel.
The actual length of the particle diameter is defined as the
distance between the intensities one standard deviation from
the maximum on the Gaussian distribution. An example of a
computer-generated particle is shown in figure 1.

The last step in generating synthetic images is filling the
laser sheet volume with the generated particles. This process
is done by first specifying a required particle density (also
referred to as seeding density) for the first image. In this
case, the particle density is defined as the density of the visible
particles projected onto the x, y plane. A small volume is then
filled with the correct number of particles, each with a random
value for its center point, x0, y0, z0. If any particles overlap,
each pixel location is given only the higher of the competing
intensities. This process is then repeated until the entire first
image is generated. The second image is then generated by
displacing each particle according to a predetermined velocity
profile. For the second image, particles are allowed to be
displaced outside of the small sections in which they are
generated or off the image entirely. The synthetic image pairs
used in this study included no noise, did not incorporate out-
of-plane losses and used a box light sheet. An example of three
generated images with different seeding densities is shown in
figure 2.

For the uniform flow case, the x-direction displacement
is varied from 0.0 to 1.5 px in steps of 0.1 px (the y-direction
displacement is zero). Seeding densities of 1%, 2% and 5%
1/px are used. The particle diameter ranged from 1.3 to
4.9 px in steps of 0.4 px. Interrogation window radii of 4,
8, 16 and 32 px were tested.

For the Oseen vortex flow case, the particles are displaced
according to

uθ = �

2πr

[
1 − e( −r2

γ
)
]
, (10)

where uθ is the vortex velocity in the θ direction, r is the
distance from the center of the vortex and � and γ are
parameters determining the strength of the vortex. From
this velocity profile, the z-direction vorticity can be computed
using equation (11):

ωz = �

γπ

[
e( −r2

γ
)
]
. (11)

For this study, � = 2400π
px2

s and γ = 5000 px2 giving a
maximum velocity gradient of approximately 0.23 1

px . The
resulting velocity and vorticity profiles are shown in figure 3.

In this case, all images are 512 × 512 px, with seeding
densities of 2% and 5% 1/px, and particle diameters of 1.3,
2.5, 3.7 and 4.9 px. All of the cases tested are summarized in
table 2.

3.2. Error description

In general, two different types of error can be used to describe
the accuracy of a particular measurement, the bias error and
the random error. The bias error describes the difference in
a calculated averaged value from the exact value. It exists
in all measurements as a deviation from the true value and is
described as

εbias = um − uexact, (12)

where uexact is the single true value and um is the average
measured value given as

um = 1

N

N∑
i=1

ui, (13)

with ui being a single measured value. The random error
describes the statistical spread of the measured values about the
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Table 2. Cases tested using the GIDPIV algorithm.

Parameter Uniform flow Oseen vortex

Image size (px) 124 × 124, 184 × 184, 304 × 304, 544 × 544 512 × 512
Light sheet Box Box
Border (px) 32 32
x, y distance between center points (px) Interrogation window radius Interrogation window radius
Radius (px) 4, 8, 16, 32 4, 8, 16
Seeding density, Ni (1/px) 1%, 2%, 5% 2%, 5%
Particle diameter, dp (px) 1.3–4.9 (0.4 increments) 1.3, 2.5, 3.7, 4.9
Weighting function a, b, c, d, e, f, g a, c, f, g
Interpolation Bilinear, bicubic, bicubic spline Bilinear, bicubic, bicubic spline

Figure 2. Computer-generated images with seeding densities Ni = 1% 1/px (left), Ni = 2% 1/px (middle) and Ni = 5% 1/px (right).

Figure 3. Specific Oseen vortex velocity and vorticity profiles used
in the present research.

average measured value. It is the result of random inaccuracies
in the measurement process, and is expressed as

εrandom =
(

1

N

N∑
i=1

(ui − um)2

) 1
2

. (14)

The total error is a combination of both the bias error and the
random error and is calculated by taking the root sum squared
of the two:

εtotal =
√

ε2
bias + ε2

random. (15)

3.2.1. Uniform flow. As described above, to accurately
represent the error of the present GIDPIV algorithm, the
calculations must be averaged over many repetitions. For

the uniform flow cases, only one image pair is required per
displacement/variable set because each interrogation window
will have the same displacement. Therefore, the calculated
velocity of each interrogation window can be averaged with
that of all the other interrogation windows of the same
image pair leading to the following descriptions for uniform
flow:

um UF = 1

Ncp

Ncp∑
i=1

ui (16)

εrandom UF =
⎛
⎝ 1

Ncp

Ncp∑
i=1

(ui − um cp)
2

⎞
⎠

1
2

, (17)

where Ncp is the number of interrogation window center
points in the images. For the present study, a total of 196
interrogation windows are used for each image pair. With this
requirement, the size of the generated images then depended
on the interrogation window radius.

3.2.2. Oseen vortex. For the Oseen vortex cases, the velocity
and vorticity at each interrogation window center point vary
with distance from the vortex center, so the only calculations
that can be averaged together are those that are at the same
radial location. Thus, multiple image pairs must be evaluated
for each variable set. Accordingly, the following equations
result for the Oseen vortex cases:

um OV = 1

NR ∗ NIP

NR∗NIP∑
i=1

ui (18)

εrandom OV =
(

1

NR ∗ NIP

NR∗NIP∑
i=1

(ui − um OV )2

) 1
2

, (19)
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where NR is the number of points at the same radial location
and NIP is the number of image pairs. For this study, 100 image
pairs are evaluated for each variable set to generate the above-
mentioned errors. Finally, in each of the above-mentioned
error equations, u can represent any calculated quantity. For
example, the above equations are used to calculate the error
in the x-direction velocity for the uniform flow cases and the
error in both total velocity, U =

√
u2 + v2, and vorticity for

the Oseen vortex cases.

4. Results

4.1. Uniform flow results

For the sake of brevity, the results of the investigation of the
use of GIDPIV on a uniform flow field will be given rather than
the data. Several properties were altered in order to determine
the combination resulting in the highest possible accuracy.
These properties were interrogation window radius, particle
image diameter, particle seeding density, window weighting
function and interpolation algorithm. The approach taken was
to start with commonly accepted property values (Raffel et al
1998), such as a constant weighting function, a seeding density
of 5% 1/px, bilinear interpolation and a particle diameter of
3.7 px. With these properties, the optimal window size was
found. Using the optimal window size, the particle image
diameter was adjusted to find the optimum. This process was
repeated with all the properties until the optimum was reached.

Window radii of 4, 8, 16 and 32 pixels were tested with
the larger windows showing significantly lower random, and
thus also total, error. The 16 px and 32 px windows showed
approximately the same total error. The random error showed
a peak-locking aspect with a 1 pixel periodicity, similar to
that found by Gui and Wereley (2002). The lowest maximum
total error was produced by the 32 px radius case, at 0.025 px.
Different parameters (seeding density, particle diameter, etc)
can produce even lower errors, but all follow approximately
the same trend, with larger windows producing lower errors.

With the interrogation window size fixed at 32 px, the
particle image diameter was varied from 1.3 to 4.9 px in steps
of 0.4 px. For both bias and random errors, it was found that
increasing diameter resulted in lower error, with the lowest
total error at 0.018 px. Mayer (2002) also found similar
behavior, showing that increasing particle diameters (up to
4 px were tested) resulted in lower errors. These results are
not consistent with traditional DPIV (e.g. Raffel et al 1998),
which finds an optimal particle image diameter of around 2.1–
2.5 px. This trend of decreasing error with increasing particle
diameter is also found for all parameter sets as a function of
the particle diameter. While even larger diameters may be
optimal, 4.9 px was the highest tested in this work resulting in
a maximum total error of 0.018 px.

Using a 32 px radius window and particles with a diameter
of 4.9 px, the seeding density was varied from 1 to 5% in
order to determine an optimum. The seeding density of
Ni = 1% 1/px had the lowest bias error and the highest random
error. The highest seeding density, Ni = 5% 1/px, on the
other hand, had the highest bias error and the lowest random

error. Peak locking was also evident for both the bias and
random errors, although it decreased with increasing particle
image diameter similar to what was noticed by Kim and Sung
(2006). However, because the random error is much lower in
magnitude than the bias error, the bias error dominates the total
error. The seeding density of 2% shows a slightly larger total
error than the 1% sending density errors. Therefore, with all
other variables held constant and a large interrogation window
radius, the seeding density of 1% actually gives the lowest total
error at 0.012 px. This behavior is different from that seen for
standard DPIV (Gui and Wereley 2002). For larger windows,
the trend of lower error with decreasing seeding density is
found for all parameter sets. Smaller windows benefitted from
higher seeding densities, presumably due to the relatively low
amount of information contained in the windows.

Using the weighting functions defined in section 2.3, it
was found that weighting functions did not have a very large
effect on the bias error. This behavior makes sense because
the uniform flow is the same everywhere in the interrogation
window. Therefore, increasing or decreasing the importance
of a certain region should not affect the bias. The random error
shows the Nogueira and parabolic up weighting functions to
have the highest random error. This is most likely due to the
severely diminished amount of data within the windows for
these functions. The Nogueira and parabolic up weighting
functions remove most of the data from the window. The
parabolic down (shifted up) and constant weighting functions
result in the lowest random (and therefore total) errors. This
is most likely due to the fact that no area of the window is
exaggerated or diminished relative to the rest. In a uniform
flow, this approach results in the lowest errors. Nogueira
et al (1999) also noticed a new source of error when using
the Noguiera weighting function termed the slippage error. It
was advised that this weighting function was not to be used
on windows smaller than 32 by 32 px (Nogueira et al 2001).
Although the current window has a diameter of 64 px, this
could be an indication as to why Nogueira’s weighting function
results in significantly higher errors with respect to other
weighting functions. These trends hold for all parameter sets
as well, where both the constant and parabolic down (shifted
up) weighting functions consistently give good results. Since
the constant weighting function was used above, no decrease
in maximum total error was found.

Since the GIDPIV algorithm requires the image to be
deformed with subpixel accuracy, some sort of interpolation
algorithm is required. Three commonly used interpolators
are the bilinear, the bicubic and the bicubic spline algorithms.
Here, these interpolators were tested using parameters found
to be optimal in the previous paragraphs. Both the bias and
random errors, and thus the total error, were drastically affected
by the choice of interpolation algorithm. This was especially
apparent in the case of bias error, which was decreased by
nearly an order of magnitude by the use of bicubic spline over
bilinear interpolator. The bicubic interpolator also showed a
significant improvement over the bilinear, but only by about a
factor of 2. The random error showed similar results, with
bicubic offering a 25% error reduction and bicubic spline
offering a 40% reduction over the bilinear interpolator. For
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Figure 4. Velocity bias (left) and random (right) error as a function of the radial distance from the center of the Oseen vortex for two radii.
Ni = 2% 1/px, dp = 4.9 px, constant, bilinear interpolation.

the bilinear interpolator, the bias and random error were
comparable such that the total error received contributions
from both. In the case of bicubic and bicubic spline, the
random error dominated the total error. All of these error
reductions are simply due to the higher accuracy of the more
advanced interpolation algorithms. These improvements do
come at a cost in terms of computational time. For one data set,
using bilinear interpolation resulted in a computational time
of about 1 min. For the same data set, the bicubic and bicubic
spline interpolators took 30 min and 2.5–3 h, respectively.
Other investigations (Astarita and Cardone 2005, Kim and
Sung 2006) into the use of more advanced interpolation
algorithms have yielded similar results with bicubic giving
better results than bilinear, and bicubic spline resulting in even
lower errors. For example, Astarita and Cardone found that
bicubic interpolation reduced a random error by more than
a factor of 2 over bilinear, and bicubic spline decreased it by
another factor of 2. Using the optimal parameters found above,
a maximum total error of only 0.006 px is possible for uniform
flow.

4.2. Oseen vortex results

4.2.1. Window radius comparison. For the Oseen vortex
case, three interrogation window radii are studied, 4, 8 and
16 px. The errors are prohibitively large for the 4 px case
(on the order of 0.5 px for all radial distances), and thus are
discarded from the current discussion. The 8 and 16 px radius
windows are tested for 100 sample images and the averaged
results are shown in figure 4. A seeding density of 2% is used
along with a particle diameter of 4.9 px in accordance with the
results of the uniform flow testing.

The error is clearly higher in the center of the vortex
where the gradients are greatest. An interrogation window of
8 px radius gives a lower error near the center of the vortex,
although with significantly more scatter. The 16 px radius
window results in a lower total error at larger distances. The
4 px radius is just too small to accurately capture the large
velocity gradients of the Oseen vortex. On the other hand,

the 16 px radius is large enough that it does not experience a
large loss or addition of particles, so its random error is very
low. However, because it is so large, the velocity changes too
much within the interrogation window, and the assumption
that velocity is constant within the window is no longer very
accurate. Therefore, its bias error is higher than that of the
8 px radius. The 8 px radius seems to be the best compromise
between the two and, as a result, gives a low total error in the
regions of higher velocity gradients.

Figure 5 shows the total error in vorticity for 8 and 16 px
radius windows. The same parameters as above are used.

In this case, interrogation windows with a 16 px radius
have the lowest error for all radial distances. Beyond about
75 px, the error essentially goes to zero, but below 75 px, it
appears that even a 16 px radius is too small to accurately
reflect the rotation of the flow. The 16 px window is the
superior choice; it exhibits lower scatter in high gradients,
produces the lowest error at large radii (low gradients) and
reflects rotation with the least error (radii greater than 75 px
have a negligible total error in vorticity). For these reasons,
16 px windows are used for the remainder of the analysis.

4.2.2. Particle diameter comparison. The results from the
uniform flow case reveal that larger particle diameters result in
lower errors. This is assumed to be true for the Oseen vortex
case as well, but is tested here. The seeding density is held at
2%, again in accordance with the results of the uniform flow
studies. An interrogation window radius of 16 px is used due
to its performance in terms of vorticity error. Figure 6 shows
the results obtained by varying the particle diameter from 1.3
to 4.9 px.

Again, the largest particle diameter is shown to result
in the lowest error, particularly in the case of a random
error. This result was also found by Mayer (2002), up to a
diameter of 4 px (largest tested). The decrease in error is
most evident in the center where velocity gradients are the
highest. Again, this behavior differs from traditional DPIV
(e.g. Raffel et al 1998) where particles with a diameter between
2.1 and 2.5 px produce the lowest errors. Figure 7 shows
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Figure 5. Vorticity bias (left) and random (right) error as a function of the radial distance from the center of the Oseen vortex for two radii.
Ni = 2% 1/px, dp = 4.9 px, constant, bilinear interpolation.
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Figure 7. Vorticity bias (left) and random (right) error as a function of the radial distance from the center of the vortex for various particle
diameters. R = 16 px, Ni = 2% 1/px, constant, bilinear interpolation.

the effect of particle image diameter on the error in vorticity
measurements.

The trend of decreasing error with increasing particle
image diameter is even more pronounced for vorticity

measurements than velocity. In this case, however, both bias
and random errors show a decrease. As in the case of uniform
flow, it cannot be said that a diameter of 4.9 px results in the
lowest error as diameters greater than this were not tested.
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Figure 9. Vorticity bias (left) and random (right) error as a function of the radial distance from the center of the Oseen vortex for two
seeding densities. R = 16 px, dp = 4.9 px, constant, bilinear interpolation.

4.2.3. Seeding density comparison. Using the same
parameters as before, the effect on error in both velocity and
vorticity is tested. The interrogation window radius is 16 px,
the particle image diameter is 4.9 px and a constant weighting
function and bilinear interpolation are used. Figure 8 shows
the effect of seeding density on the bias, random and total error
of velocity.

The effect of seeding density is not nearly as pronounced
for the Oseen vortex case as it is in the uniform flow case,
but at distances greater than 125 px from the vortex center,
the higher seeding density exhibits about half the error of the
lower seeding density. This appears to come mainly from
the random error contribution, although the exact reason is
unknown. It could be that more information is contained
in the interrogation window. The uniform flow case was
investigated using an interrogation window with a radius
of 32 px, meaning that it had four times the area of the
current window, making the added information from the higher
seeding density unnecessary. Figure 9 shows the effect of
seeding density for error in vorticity measurements.

For vorticity, the higher seeding density gives a slightly
lower error than the lower seeding density. The lower error
is most clearly visible in the random error, close to the vortex

center. Although not shown, interrogation windows with a
radius of 8 px (four times less area than the current window)
benefit even more from an increased seeding density, again
indicating that more information in the window results in the
lower error, particularly the random error.

4.2.4. Weighting function comparison. Of the weighting
functions described in section 2.3, only four showed promise
in the case of the Oseen vortex; these are the constant, the
parabolic up (shifted up), the parabolic down (normalized) and
Nogueira’s weighting function. The effect of these weighting
functions on bias and random errors for both velocity and
vorticity is investigated. Figure 10 shows the results for
velocity.

Nogueira’s weighting function gives the lowest total error
up to 125 px from the vortex center. However, it has the
highest scatter of the three at lower radii as indicated in the
random error plot. Additionally, at higher radii, Nogueira’s
weighting function results in slightly higher error than the
other three, which are all approximately equal. Nogueira’s
weighting function performs best in areas of high gradient,
followed by the parabolic down weighting function. This
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Figure 10. Velocity bias (left) and random (right) error as a function of the radial distance from the center of the Oseen vortex for various
weight functions. R = 16 px, Ni = 5% 1/px, dp = 4.9 px, bilinear interpolation.
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Figure 11. Vorticity bias (left) and random (right) error as a function of the radial distance from the center of the Oseen vortex for various
weight functions. R = 16 px, Ni = 5% 1/px, dp = 4.9 px, bilinear interpolation.

is due to the focus of both functions on the center of the
window, reducing the effect of velocity gradients on the edges.
Figure 11 shows the effects of weighting function choice on
error in the measurement of vorticity.

In the case of vorticity, parabolic down and constant
weighting functions perform the best, with constant providing
the lowest error near the vortex center (mainly a benefit in
random error), but parabolic down providing a lower error
further from the center (mainly in the bias error). Since it was
found earlier that a larger interrogation window performs better
near the vortex core, it is intuitive that the constant weighting
function gives lower error than parabolic down, as the latter
emphasizes the center of the window over the edges. In overall
performance, between velocity and vorticity measurements,
the parabolic down (normalized) weighting function seems to
be a good compromise with Nogueira’s weighting function
also performing well.

4.2.5. Interpolation algorithm. Since the current technique
relies on image deformation, the choice of interpolation
algorithm obviously should have a large effect on the accuracy
of the technique. The same three common interpolation
algorithms tested for the uniform flow case are investigated
here. The other parameters have been chosen based on the
results of previous sections. The interrogation window has a

radius of 16 px, the particle image diameter is 4.9 px, the
seeding density is 5% and a parabolic down (normalized)
weighting function has been used. Figure 12 shows the effect
of the interpolation algorithm choice on the bias and random
errors in the measurement of velocity.

The choice of interpolation algorithm shows remarkably
little effect on the bias error, but can significantly decrease
the random error. However, since the total error is dominated
by the bias error, the more accurate interpolators (bicubic and
bicubic spline) do not show much improvement beyond 50 px
from the vortex center. Near the vortex center, the bilinear and
bicubic interpolators perform approximately equivalent, with
the bicubic spline offering a dramatic improvement, with the
random error no greater than 0.015 px. Figure 13 shows the
effect of interpolator choice on vorticity measurement.

Here, the bilinear interpolator performs best in terms of
bias error, where it has its lowest error up to about 50 px
from the vortex center. For the random error, the bicubic
interpolator did not show an improvement over the bilinear
interpolator, but the bicubic spline interpolator decreased the
random error drastically. Near the vortex center, the bicubic
spline reduces the total error to slightly more than 0.01 px,
and at radii greater than 50, the error decreases to ∼0.003 px.
Since the random error dominates the total error, the bicubic
spline interpolator is clearly superior in spite of having the
higher bias error.
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Figure 12. Velocity bias (left) and random (right) error as a function of the radial distance from the center of the Oseen vortex for various
interpolation algorithms. R = 16 px, Ni = 5% 1/px, dp = 4.9 px, parabolic down (normalized).
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Figure 13. Vorticity bias (left) and random (right) error as a function of the radial distance from the center of the Oseen vortex for various
interpolation algorithms. R = 16 px, Ni = 5% 1/px, dp = 4.9 px, parabolic down (normalized).

For the error in both velocity and vorticity, the bicubic
interpolator did not result in improvements over the bilinear
interpolator, which is much faster computationally. The
bicubic spline interpolator showed drastic improvement in the
random error for both velocity and vorticity, which is to be
expected as it is a significantly more advance interpolation
algorithm.

4.3. Comparison with standard PIV

Since the computational cost of the GIDPIV algorithm is quite
large, a comparison with standard (Raffel et al 1998) PIV has
been performed to show the clear benefit of the more advanced
processing. The final case of the Oseen vortex was run with
a non-window-shifting cross-correlation algorithm, the results
of which were checked for outliers using a standard normalized
median technique. Figures 14 and 15 show a comparison of
the results from this standard PIV with the results of GIDPIV.
The seeding density was 5% and the particle image diameter
was 4.9 px. The standard PIV used 32 × 32 px windows with
a 50% overlap, while the GIDPIV algorithm used the same
parameters as in section 4.2.5.

It is clear that the GIDPIV algorithm more accurately
measures the velocity profile of the Oseen vortex, and more
impressively, accurately calculates the vorticity directly. Even

though standard PIV has a smoothing effect due to its similarity
to a moving average, the vorticity contours of the GIDPIV
algorithm are much smoother, accurately representing the
Oseen vortex. While the processing time may be significantly
longer, the benefits to accuracy are worth the cost.

4.4. Experimental image

Since the purpose of the GIDPIV algorithm is to
experimentally determine flow properties, it is necessary to test
it on real images, which contain noise, out-of-plane particle
loss and other factors making PIV more difficult. A shear
layer image set was chosen as a test due to the various flows
visible along with some three-dimensionality present in certain
regions of the flow. The area viewed was 22 cm by 22 cm, with
flow velocities of 10.5 cm s−1 and 22.5 cm s−1 and a Reynolds
number based on visual shear thickness of 1.2 × 104. The
apparatus and details of the flow in question are described
by Dabiri (2003). Figure 16 shows a sample image from the
set.

While the image is fairly clean, there is still some
unaviodable error and also, the average particle image diameter
is significantly lower (about 2 px) than what was found to be
optimal. In addition, many of the particle images are clipped to
an intensity value of 255, indicating a slight overexposure. The
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Figure 14. Comparison of the vorticity contours from GIDPIV (left) and standard PIV (right) from the Oseen vortex of section 4.2.

Figure 15. A plot of the velocity magnitude as a function of the
radial distance shows that the GIDPIV results have far less scatter
and more accurately measure the true velocity profile as compared
to standard PIV.

user-controlled parameters used for this image set were chosen
based on the results of the two previous sections. A 16 px
radius was attempted with Noguiera’s weighting function and
a bicubic spline interpolation. However, the results showed
a significant slippage error so a window radius of 32 px was
used instead. The results of the GIDPIV processing are shown
in figure 17.

It is clear that the current algorithm is able to pick up
structures within the flow quite well and that it is not adversely
affected by the loss of particles or image noise. There is still
potential for improvement if the particle size were increased in
the experiment such that the particle image diameter is around
5 px.

5. Discussion

5.1. Uniform flow

For the uniform flow cases, the total error almost always
decreases with increasing interrogation window radius. The

reason for this trend is that the larger interrogation windows
cover more area of the flow, and, since the flow is uniform,
larger windows have more particle pairs to contribute to the
correlation. Because the smaller interrogation windows cover
less flow area, they are more susceptible to errors from particles
entering and leaving them. Larger particle image diameters
give lower overall errors, with no maximum size found in the
current study. This result holds for all parameter sets, and is
one major difference of GIDPIV as compared to conventional
DPIV. Another fundamental difference is the lower error as
a result of lower seeding density; however, this only holds
for larger interrogation windows, as smaller windows require
more information in the form of higher seeding density to
remain accurate. The weighting function is found to have
little effect on bias error, given that the flow is uniform. The
random error is quite susceptible to the choice of weighting
function with the Nogueira and parabolic up functions giving
the highest error, while constant and parabolic down (shifted
up) functions the lowest error. One of the most evident
reductions in error comes from the choice of interpolation
algorithm. As can be expected, bilinear performs worst, with
bicubic giving a 40% reduction in total error and bicubic spline
a further 25% reduction. The choice of interpolator may be
influenced by the increased computational time, especially for
bicubic spline.

Overall, the best results were found for an interrogation
window radius of 16 or 32 px, a seeding density of 1% (given
a large window), a particle diameter of 4.9 px, a constant or
parabolic down (shifted up) weighting function and a bicubic
spline interpolator. With this parameter set, maximum total
errors as low as 0.006 px are possible.

5.2. Oseen vortex

The velocity total error is lowest for the R = 8 px cases near the
center of the vortex (at a radius of less than about 50 px) and
the R = 16 px cases further away from the center of the vortex.
On the other hand, the vorticity total error is lowest for the
R = 16 px cases for the entire range of radial distances. Unlike
the uniform flow cases, the larger seeding density gives the
best results for both the velocity and the vorticity calculations.
However, the total error still decreases with increasing particle
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Figure 16. 100 by 100 px sample image from the experimental
shear layer set.

diameter. The choice of interpolation algorithm affects mainly
the random error, which is generally greater than the bias error
for this situation. The bicubic spline interpolator gives the
best results for both velocity and vorticity. The parabolic
down (normalized) and Nogueira’s weighting functions give
the best results, but Nogueira’s weighting function is much
more susceptible to outliers in its calculations. Therefore,
when using Nogueira’s weighting function, it would be best to
run a suitable outlier detection routine in between iterations to
ensure that the algorithm converges on the correct result. For
the current case, the best combination of parameters is found to
be a window radius of 16 px, a seeding density of 5%, particles
with a diameter of 4.9 px, a parabolic down (normalized)
weighting window and bicubic spline interpolation. As noted
earlier, if the fluid undergoes very large gradient changes and
the velocity measurement is more important than vorticity, it
may be beneficial to use interrogation windows with radii of
8 px.

Figure 17. (left) Results of the shear layer flow showing higher velocities on the right side of the image. (right) Velocity field with the mean
flow subtracted, showing structures within the flow.

5.3. Experimental images

Using the same parameters that were found to be optimal in
the Oseen vortex case, an image pair of a shear layer was
processed. When windows with a radius of 16 px were
used, the results did not converge properly, indicating that
not enough data were contained in the window to allow the
use of Nogueira’s weighting function. Using a 32 px radius
interrogation window allowed the use of Nogueira’s weighting
function while still giving good results. The results show that
the current technique can be used not only in clean, synthetic
images, but also on real experimental data.

5.4. Computational considerations

In this study, it is found for the uniform flow case that a
bicubic interpolation produced better results than a bilinear
interpolation, and that a bicubic spline interpolation reduced
error further still. The uniform flow case showed a 40% total
error reduction for the bicubic interpolation over the bilinear,
and a further 30% reduction by using the bicubic spline
interpolator. For the Oseen vortex case, only appreciable error
reduction occurred within 50 px of the vortex center and was
only apparent for the bicubic spline interpolator, decreasing
the maximum velocity and vorticity total errors by 60% and
80%, respectively. Outside of 50 px, all three interpolators
give the same result.

The increase in the accuracy of the bicubic and
bicubic spline interpolators comes at the price of increased
computational time. As an example, for the interrogation
window radius of 8 px and the corresponding image size of
184 × 184 px, the bilinear cases took approximately 1 min,
the bicubic cases took approximately 30 min, and the bicubic
spline cases took approximately 2.5–3 h real time, on the same
computer. The attitude taken is similar to that of Fincham
and Delerce (2000), in that the accuracy possible using more
advanced interpolation algorithms is worth the computational
expense.
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6. Conclusion

GIDPIV has been studied and the effects of interrogation
window radii, particle image diameter, seeding density,
weighting window choice and interpolation algorithm choice
have been evaluated based on bias, random and total errors.
This algorithm was applied to artificially generated images
of both uniform flow and the flow around an Oseen vortex.
For the uniform flow, larger interrogation windows tended to
outperform the smaller windows, mainly due to the increased
information they contained. It was found that lower seeding
density (1% 1/px) resulted in lower bias errors for all but
the smallest interrogation windows. Weighting widows that
tended to keep more information (such as constant and
parabolic down (shifted up)) resulted in a lower error than
those that eliminated information (such as Noguiera and
parabolic up), mainly because of the lack of data within an
interrogation window. Of the interpolation algorithms tested,
the more advanced schemes performed significantly better,
with the bicubic spline resulting in the lowest error. A major
difference found between GIDPIV and traditional PIV (Raffel
et al 1998) was the optimum particle image diameter. For
both the uniform and Oseen vortex flow, it was found that
increasing particle image diameter resulted in a decreased
error. Diameters up to 4.9 px were tested with no indication
of a minimum of error, meaning that larger diameters than
those tested may result in even lower errors. For the Oseen
vortex case, interrogation windows with radii of 16 px proved
optimal for measuring the vorticity of the flow and for most
areas of the velocity. In areas of very high change in the
velocity gradient, smaller windows tended to have less bias
errors since the variation of the flow within the window was
less. Overall however, the 16 px windows performed best.
Here, the seeding density was found to have an opposite effect
on error as it did in the uniform flow case (decreasing error with
increasing density). Weighting window analysis showed that
Noguiera’s weighting function performed well, but included
a high degree of scatter in the data. For this reason, and
the fact that it performed slightly better near the vortex core,
the parabolic down (normalized) was chosen as the optimal
weighting window for GIDPIV. Investigation into the choice
of interpolation algorithm showed effects only at radii below
about 50 px. Inside this radius, the bicubic spline interpolator
drastically decreases random error, and thus total error. The
bicubic interpolator did not show a definitive improvement
over the bilinear interpolator. GIDPIV has been shown to
work on experimental images as well as synthetic images,
showing structures within shear layer flow with properly
chosen algorithm parameters. GIDPIV has been shown to
perform well when compared with other advanced techniques
with the benefit of calculating the shear and rotation in the
flow directly via the optimization routine.
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